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ABSTRACT 

Military electronics rely on commodity processors, many of which are manufactured 

overseas where the trustworthiness of the foundries is uncertain. This thesis attempts to 

answer the question of whether common bus protocols in use today differ significantly 

with respect to security, by conducting an analysis of common integrated circuit bus 

protocols (Inter-Integrated Circuit [I2C], Advanced Microcontroller Bus Architecture 

[AMBA], HyperTransport, Wishbone, and CoreConnect) based on the Flaw Hypothesis 

Methodology (FHM). This thesis follows the four stages of FHM. The first stage is Flaw 

Generation, which involves creating hypothetical attack scenarios. The next is Flaw 

Confirmation, which involves confirming the flaws generated in the first stage through 

analysis of the specifications of the bus architectures as well as testing and research in the 

literature. The third stage is Flaw Generalization, which evaluates the impact of each flaw 

to determine whether it suggests that a more serious flaw exists in that bus architecture. 

The final stage is Flaw Elimination, which identifies strategies (and their costs) for 

mitigating the vulnerabilities based on techniques in the hardware security literature. We 

conclude that the bus architectures we analyzed differ significantly with respect to 

security. 
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I. INTRODUCTION 

A. MOTIVATION 

Military electronics rely on commodity processors, many of which are 

manufactured overseas. Their trustworthiness is uncertain because there are many 

opportunities for chips to be compromised at different links of the supply chain. These 

compromised parts present serious problems for the confidentiality, integrity, and 

availability of data. Since the hardware is the lowest level of system abstraction, 

compromised hardware affects the trustworthiness of higher layers that depend on it. 

Malicious functions implemented at the hardware level have direct control over the 

lowest level of the system, bypassing intermediate Operating System (OS) layers. For 

both attacker and defender, there are both opportunities and challenges involved with 

working at the hardware level. In addition to direct control and bypassing the OS layers, 

opportunities include the high performance of raw hardware and the possibility of strong 

physical separation. Challenges include the semantic gap between the hardware level of 

abstraction and high-level application software, as well as additional engineering and 

fabrication costs associated with designing and manufacturing custom hardware. 

Before addressing detection and mitigation of fabrication design flaws, it is 

necessary to start with a secure hardware design. Like software, attacks against hardware 

include both operational and developmental attacks. Operational attacks include 

differential power analysis, fault injection, and probing. Developmental attacks include 

malicious design tools and malicious intellectual property. A secure design requires a 

well-developed threat model, a security policy for addressing the threats, and a system 

implementation that obeys the policy. 

Hardware security is integral to every part of the system such as memory, 

chipsets, storage devices, controller devices, display devices, motherboards, and bus 

interconnects. The study and understanding of on-chip bus security is a key component of 

hardware security because the bus is an essential link for the entire system. No matter 

how secure other hardware devices are, if the bus is insecure then the risk of data 
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compromise is high. Hardware security requires careful management of the hardware and 

software, such that system components obey the overall system security policy. 

B. PURPOSE OF STUDY 

In this thesis, we investigate methods for trustworthy design and use of on-chip 

interconnects for general-purpose processors. We perform a vulnerability analysis based 

on a flaw hypothesis methodology (FHM) [1] of common bus architectures found in 

general-purpose processors and systems based on general-purpose processors. These 

architectures include Inter-Integrated Circuit (I2C), Advanced Microcontroller Bus 

Architecture (AMBA), HyperTransport, Wishbone, and CoreConnect. Results of the 

vulnerability analysis guide our recommendation of techniques to address bus security 

problems at the application and the hardware design levels. 

C. RESEARCH QUESTIONS 

The primary research question of this thesis is: do common buses in use today 

differ significantly with respect to security? Subsidiary research questions include: How 

are general-purpose processors susceptible to intentional and unintentional security 

vulnerabilities in the hardware design? How should engineers design common bus 

architectures to prevent, detect, and respond to unintentional and intentional security 

flaws in hardware? What are the current practices and future plans in place to ensure 

trustworthy designs? 

D. RESEARCH HYPOTHESIS 

We hypothesize that common buses in use today differ significantly with respect 

to security, as well as some bus architectures having design features that make them more 

vulnerable to specific attacks. In addition, we hypothesize that some bus architectures 

have features that make it easier to incorporate countermeasures. Examples of possible 

countermeasures include separation of untrusted and trusted components, encryption 

methods, and sound security policies. 

We hypothesize that common bus architectures do not prevent, detect, and 

respond to unintentional and intentional security flaws in hardware. Buses merely provide 
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a reliable service of timely data delivery, which ensures availability with respect to 

security. For those buses that have countermeasures against security attacks, we believe 

that the costs of those countermeasures are high and that further design improvements are 

necessary to reduce their performance impact to an acceptable level. We hypothesize that 

one reason major chip manufacturers are moving to Network-on-Chip (NoC)-based 

architectures is that a network-based architecture gives greater control over security 

policy enforcement. 

E. ORGANIZATION OF STUDY 

The space of hardware security mechanisms for buses and interconnects is large. 

This thesis focuses on common bus architectures, specifically multicore, on-chip 

interconnect. The first phase of our study addresses the design specifications of a set of 

widely used, open bus architectures (AMBA, Wishbone, HyperTransport, etc.). The 

second phase of our study performs a vulnerability analysis of these bus architectures 

based on their design specifications. Specifically, how are each of the bus architectures 

susceptible to attacks that compromise confidentiality, integrity, and availability? The 

third phase of our study recommends techniques for addressing these vulnerabilities. 

Our methodology involves rigorous analysis of the published specifications of a 

set of open-source bus architectures commonly found in general-purpose processors, with 

respect to a policy and threat model. We analyze the specifications of the bus 

architectures in order to determine their vulnerabilities. Once these vulnerabilities are 

identified (e.g., problems with the design of a bus arbiter), we recommend methods for 

their mitigation, including prevention, detection, and response. We formulate a precise 

threat model, security model, concept of operation, semantics of operation, and design 

specification for a worked example. We express our design example at the block diagram 

level of abstraction. We leave the transformation of the high-level design to lower levels 

of refinement to future work. 
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II. BACKGROUND 

A. INTRODUCTION 

Integrated Circuit (IC) bus protocol analysis allows chip designers and computer 

security professionals to understand, identify, and mitigate security vulnerabilities with 

respect to confidentiality, integrity, and availability. 

To better understand the bus protocols that this thesis investigates, this section 

provides background on IC bus architecture concepts that includes bus communication 

components, System-on-Chip (SoC) designs, security policies, and threat models. 

B. CORE CONCEPTS OF IC BUS COMMUNICATIONS 

Buses are defined as a set of wires that acts as a shared, but common, data path to 

connect multiple subsystems within a system. Buses are frequently used to transmit 

information from one component to another and their architectures are based on one of 

two forms of information flow—parallel or serial form. Parallel buses carry data on 

multiple wires (several bits of data are sent at the same time along multiple paths), 

whereas serial buses carry data in a bit serial form (bits of data are sent one at a time 

along a single path). These design choices are based on platform requirements and the 

designers’ needs [1]. 

Data is transferred from one device to another on a system. Each device is 

assigned a role of master, slave, or sometimes both, depending on the platform and 

particular bus architecture. A master controls the data traffic on the bus. It is responsible 

for initiating a session by making a read or write request to a device that is designated as 

a slave. Inversely, a slave performs a service at the behest of a master device. A practical 

example of a master and slave interaction is if main memory (master device) wanted to 

write data to a display device (slave). 

For data on a bus to travel from one device to another, there has to be a predefined 

path known as a data line. A data line is a path for the transmission of data between 

devices. The master and slave devices connected to the bus data line transfer device 
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addresses, instructions, read/write data, and acknowledgements across the data path. A 

data path can be unidirectional or bidirectional based on the bus architecture. However, 

modern bus architectures tend to favor bidirectional in order to save hardware space. 

Clock signals are used to inform master and slave devices when to start, stop, and 

what speed the data is traveling at. A clock line is a path for which systems’ clock signals 

oscillate between high (logical one) and low (logical zero) states. The clock is responsible 

for speed, bit width, and coordinated actions of a circuit during a bus operation. A clock 

generator produces clock signals, which synchronize data movement on the data line. 

Through any interaction between a master and slave, there has to be assurance 

that there is no loss of information through bus collisions, deadlocks, or unauthorized use 

of devices (i.e., depending on the platform, some devices are not permitted to interact 

with other devices). Every bus architecture has some form of arbitration to ensure that 

these policies are enforced. Arbitration is the process of determining which bus master 

will and can obtain access to the bus (e.g., to prevent more than one master from 

transmitting simultaneously to one slave). Methods of arbitration fall into the categories 

of either centralized or distributed. A centralized scheme uses a single hardware device, 

often called an arbiter, which is responsible for allocating time on the bus. The arbiter 

may be a separate device or part of the processor. In a distributed scheme, there is no 

central controller. Arbitration is managed through access control logic and all modules 

act together to share bus resources [1]. 

Platform architectures are complicated because different devices often have 

different power and speed requirements (e.g., a processor requires more power than a 

keypad), there is hardly a one-size-fits-all bus for platforms. A bridge device allows for 

more than one type of bus architecture to connect to another bus architecture by 

forwarding data from one bus to another when required. A bridge is able to accomplish 

this by converting transferred signs in order to satisfy different bus performance 

standards and protocols. 

Peripheral buses are commonly used to connect to bridges. A peripheral bus, also 

referred to as an “input/output bus” is a data pathway that connects peripheral devices to 
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the Central Processing Unit CPU. Peripheral buses are generally low speed, have low 

power requirements, and are less complex compared to other bus architectures. Types of 

devices that reside on peripheral buses are keypads, timers, and monitors. 

The majority of the bus architectures that will be examined in this thesis are SoC 

buses. A SoC effectively integrates all the components in a computer onto a single IC 

chip, including all of the necessary components to form a complete system. A SoC 

consists of microcontrollers or microprocessors, memory blocks, timing sources, 

peripherals, external interfaces (e.g., Universal Serial Bus [USB] or Ethernet), analog 

interfaces, and voltage regulators. SoC bus architectures have become more popular 

because SoC designs usually consume less power and have lower costs and higher 

reliability than the multichip systems that they have replaced. SoCs also have few 

packages in the system, which has driven down the assembly cost [2]. 

Other buses examined in thesis are those that service multicore processors. A 

multicore processor is a single integrated circuit with two or more independent processors 

known as “cores,” residing together on the same die, which executes instructions. Putting 

multiple CPUs onto a single die significantly improves performance of cache or bus 

operations because the signals between devices travel a shorter distance; therefore, the 

signal is less degraded and propagates more quickly. Higher quality signals allow the 

transmission of more data in a single clock cycle, and the shorter distances reduces the 

time it takes to conduct an operation [3]. 

C. PLATFORM SECURITY 

Designers expect that buses obey and support the platform’s security policies onto 

which they are implemented. A security policy defines what it means for a system to be 

secure. Following National Institute of Standards and Technology (NIST) guidelines, a 

security policy specifies what actions in the system are legal (e.g., access control). Three 

distinct faces of data protection are examined in this thesis: confidentiality, integrity, and 

availability [4]. 

Confidentiality is concerned with preventing the unauthorized disclosure of 

information, whereas integrity is concerned with preventing improper modification or 
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destruction of information. Availability is concerned with timely, reliable access to the 

data and services to authorized users. Of the three, a violation of integrity would be 

considered the most severe, followed by confidentiality and availability. However, buses 

are designed with availability in mind, since they are used to deliver data to the correct 

device in a timely and reliable manner. 

For designers and manufactures of platform systems to ensure that their systems’ 

behavior is according to policy, threat models are used to design test platforms. Threat 

models consider the question: against what is the system secure? Systems have assets of 

value that are worth protecting. Threat models help the system designer assess the 

probability, potential harm, and priority of attacks against system assets in order to 

minimize those threats. The three general approaches to threat modeling are  

Attacker-Centric, Designer-Centric, and Asset-Centric [5]. 

The Attacker-Centric approach to threat modeling involves evaluating the 

attacker’s goals and how the attacker might achieve them. The attacker’s motivation 

could be, for example, to read National Security Agency (NSA) e-mails. A  

Designer-Centric approach to threat modeling involves focusing on the design of the 

system and attempting to step through a model of the system, looking for types of attacks 

against each element of the model. The Asset-Centric approach considers the assets 

entrusted to a system (e.g., customer database) and what can be achieved by exploiting 

them, such as sensitive personal information (e.g., Social Security Number [SSN], credit 

card numbers, etc.). 

For future analysis and discovery of bus flaws in this thesis, we will focus on all 

three threat models where applicable, but more so on Design-Centric. We are concerned 

about an attacker discovering vulnerabilities in hardware systems by analyzing, for 

example, computer buses, SoCs, and multicore processors. 

D. RELATED WORK 

Attacks on computer hardware have increased over the past few years as 

computers have become more advanced and integrated into our personal and professional 

lives. As attackers become increasingly skilled, significant effort has been undertaken to 
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combat this emerging threat. This thesis only examines security vulnerabilities for  

on-chip buses, but there is a wide range of security attacks and vulnerabilities on other 

aspects of computer hardware. 

Less than a decade ago, attacks were largely software-related, such as buffer 

overflows, worms, viruses, etc. Lately, however, attacks have focused on OSs, device 

drivers, chipsets, memory, and peripherals. Attackers look to exploit hardware because it 

is the most privileged entity and is able to give the attacker considerable flexibility and 

power. 

Four types of hardware attacks are possible. In the first type, an adversary actively 

manipulates the control signals of a platform in order to subvert the platform. This 

requires that an attacker have physical access to the platform. In the second type, an 

attacker looks for vulnerability in the interaction between two or more components and 

exploits the vulnerability. In the third type, an attacker looks for vulnerabilities in  

boot-up/initialization configurations in order to launch hardware attacks. In the last type, 

an untrusted or less privileged user influences hardware operations. An adversary 

compromises platform security by exploiting an untrusted component on a platform in 

order to maliciously influence the operation of the hardware [6]. 

Hardware Trojans, also known as malicious inclusions, may compromise 

confidentiality, integrity, or availability (e.g., by causing unauthorized disclosure or 

modification of data) [7]. In some cases, the compromise of hardware destined for 

military systems occurs at the foundry. In 2008, Israeli jets bombed a suspected nuclear 

installation in Syria. The Syrian radar was state-of-the-art and was supposed to warn for 

impending attacks, but it failed to do so. Experts have speculated that subversion of the 

commercial off-the-shelf microprocessors in the Syrian radar occurred during fabrication, 

allowing the Israelis to block the radar [8]. The design space for malicious circuitry is 

large, and attackers have the advantage of stealth when designing attacks. These types of 

attacks are practical, flexible, and difficult to detect [9]. 

With a wide range of attacks possible, the job of the security specialist becomes 

more challenging, and designers must develop and deploy effective countermeasures. 
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E. SUMMARY 

This chapter provided background on critical concepts and terms related to IC 

buses and hardware architecture. Understanding common terms, current attacks, and 

future threats for computer hardware platforms is necessary to understand the following 

chapters, which explore how to identify and analyze risks in order to mitigate attacks. 
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III. BUS ARCHITECTURES 

A. INTRODUCTION 

We will discuss and define five common IC bus architectures currently in use and 

on the market. Understanding bus architectures comes through defining and describing 

their purpose, design principles, components, protocol specifications, and common use 

case scenarios. These will serve as a foundation for later chapters. 

B. INTER-INTEGRATED CIRCUIT (I2C) 

Philips Semiconductors developed I2C as an early implementation of an IC bus in 

the 1980s to aid communications between components that reside on the same circuit 

board (peripherals, mother boards, embedded systems, etc.). Today, more than 50 

companies worldwide have implemented I2C on over 1,000 different IC boards [10]. 

I2C buses are attractive for system designers because they are compatible with 

almost any IC, facilitating rapid prototyping of designs and allowing upgrades and 

modifications by adding or removing devices. Designers and manufacturers advertise I2C 

for its low power consumption, wide operating temperature range, and high noise 

immunity. I2C eliminates the need for address decoders and glue logic, and it reduces 

space requirements, which keeps designs simple and flexible. It also supports simple 

constructions and enables easy upgrades. I2C buses are popular in the marketplace for 

low-speed peripheral devices such as radios, televisions, and personal digital assistants 

(PDA). 

I2C has a physical layout of two bidirectional wires, Serial Data Line (SDA) and 

Serial Clock Line (SCL), which transmit information between devices. Each device 

connected to the bus has a unique address assigned to it and can operate in receive and/or 

transmit mode with a designation as a master or slave. I2C offers the possibility of having 

multiple masters; however, only one master can transmit data over the bus at a time. If 

there is an instance of two masters simultaneously transmitting data on the bus, then 

arbitration procedures resolve the contention. For example, when the two competing 

masters begin to write simultaneously to the bus, both masters will begin to write to the 
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bus. The first master who writes a “one” loses the contest and ceases its operation, while 

the other master continues with its intended operation. 

Figure 1 exhibits the topology of I2C. The SDA and SCL are bidirectional, and 

when the bus is available, both lines are HIGH. When the SDA line is HIGH, it 

represents a logical one, and when the SDA is LOW, it represents a logical zero. Data 

transfers on the bus occur at a range of speeds from 100 kilobits/second (kbit/s) to  

400 kbit/s. The data transferred across the SDA line must be stable during HIGH periods 

of the clock. The state of the SDA can only change during LOW periods of the SCL. One 

clock pulse is generated for each data bit transferred. A Start condition is generated on 

the bus when there is a HIGH to LOW transition on the SDA line while the SCL is 

HIGH. A Stop condition is defined as a LOW to HIGH transition of the SDA line while 

the SCL is HIGH. Masters are the only devices that may initiate START and STOP 

conditions. The bus is busy when there is a START condition, but free when there is a 

STOP condition. The bus will remain busy if the master initiates another START 

condition vice a STOP condition. Figure 2 depicts high and low states that initiate and 

terminate transmissions on the bus. 

 

 

Figure 1.   I2C bus topology (From [10]). 
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Figure 2.   I2C START and STOP conditions (From [10]). 

I2C requires each byte of data to be eight bits in length before it is placed on the 

SDA line. There is no restriction on the amount of data that can be transmitted per 

transfer. Slave devices have the option to force the master device into a wait status by 

lowering the SCL from HIGH to LOW whenever it cannot receive/transmit a complete 

byte or to force an interrupt. The slave device that forced the wait status on the bus is the 

only device that can end it by raising the SCL from LOW to HIGH. Each byte during a 

transfer has to be followed by an acknowledgement bit, which signals to the transmitting 

device that the byte was successfully received and that another byte may be sent. Figure 3 

depicts an I2C sequence. 

 

 

Figure 3.   I2C byte format (From [10]). 
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A typical I2C operation begins with a master addressing a slave to either perform 

a read or write. The master directly addresses the slave by its unique seven-bit address 

immediately followed by a bit to represent either a read operation, which corresponds to a 

zero, or a write operation, which corresponds to a one. The slave will immediately send 

an acknowledgement followed by the master’s sending n bytes of data [10]. The slave 

will acknowledge receiving the n bytes, and this process of sending n bytes followed by 

an acknowledgement continues until the master terminates the session. Figures 4 through 

10 are from an animation program that the author designed in Adobe Flash CS5 that will 

help the reader to understand and analyze I2C bus operations. 

 

 

Figure 4.   I2C START sequence. 
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Figure 5.   Slave addressing. 

 

Figure 6.   Write operation. 
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Figure 7.   Slave acknowledgement. 

 

Figure 8.   Data transfer. 
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Figure 9.   Data acknowledgement. 

 

Figure 10.   Sequence termination. 
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C. ADVANCED MICROCONTROLLER BUS ARCHITECTURE (AMBA) 

AMBA was developed by ARM Ltd. in the mid-1990s and is widely used in a 

range of Application Specific Integrated Circuit (ASIC) and SoC parts. It is considered 

the SoC bus of choice among developers and manufacturers because of its ability for 

reuse, modularity, and its infrastructure that supports high performance and low power 

consumption for on-chip communications. 

AMBA’s design enables reuse of Internet Protocol (IP) cores and IC processes. 

Manufacturers emphasize modularity to achieve technology independence and maximum 

performance. AMBA is unique in that is it has many distinctly different specifications, 

versions, bus types, etc. In this thesis, we will examine AMBA version 3.0, which is 

made up of three distinct bus architectures. The first is the Advanced High-Performance 

Bus (AHB), which is used as the backbone for high-performance systems and supports 

connections between processors, on-chip communications, and off-chip communications. 

The second type is the Advanced System Bus (ASB), which is a less complex alternative 

to AHB. The third is the Advanced Peripheral Bus (APB), which is optimized for 

minimal power consumption and is used for interfacing peripheral devices that do not 

require high performance or high bandwidth. Figure 11 depicts the standard AMBA 

version 3.0 topology [11]. 

 

 

Figure 11.   AMBA architecture (From [11]). 
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AHB is a new generation of the AMBA ASB bus; its purpose is to address the 

requirements of high-performance designs. AHB features include: 

 Burst transfers 

 Split transactions 

 Single-cycle bus master handover 

 Single-clock edge operation 

 Multiplexing 

 Wider data bus configuration [11] 

AHB employs basic and burst transfer sequences. Basic transfers are broken into 

two phases: address sequence and data transfer. The master devices send out an address 

signal during the address phase. During the transfer phase, the slave device sends data 

and awaits the appropriate response. The address phase will only last for one clock cycle. 

Slave devices can insert wait cycles into transfer operations in order to have more time to 

prepare valid data. When performing read operations, slave devices assert the ready 

signal until the read data is valid, but when a write operation is performed, the master 

device holds the write data until the slave device asserts the ready signal. AHB can also 

support pipelined operations for the data phase of the first transfer, and the address phase 

of the second transfer can overlap to improve bus performance. 

Burst transfers are sequential transfers that are written to the same memory space. 

Four types of burst transfers are IDLE, BUSY, NONSEQ (nonsequential), and  

SEQ (sequential). 

IDLE indicates that no data transfer is required. BUSY allows the master to insert 

idle cycles during a burst transfer because the master device wants to continue with a 

burst transfer, but the next transfer cannot take place immediately. NONSEQ indicates 

that the first transfer of a burst transfer is a single transfer. SEQ indicates that the address 

is related to the previous transfer. Burst transfers cannot exceed the 1 KiloByte (KB) 

address boundary. Aside from transfer and burst types, each transfer will have a number 

of control signals that provide additional information about the transfer. 
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The central address decoder is used to provide select signals for each slave on the 

bus. The select signal is a combination of high order address signals and a simple address 

bus decoding scheme to avoid complex logic and ensure high-speed operation. The slave 

must sample the address and control signals, and when HREADY is HIGH, the slave 

must indicate the current transfer. 

After a master has initiated a transfer, the slave then determines how the transfer 

should progress. Similar to an I2C slave device, the slave can complete the transfer 

immediately, pose an interrupt/wait state, or signal an error to indicate a failure to 

transfer. However, unlike an I2C slave, the slave device can delay the completion of a 

transfer and allow both master and slave to back off the bus, leaving the bus available for 

other transfers. 

Transfer responses are OKAY, ERROR, RETRY, and SPLIT. OKAY indicates 

that the transfer has successfully completed. An ERROR response indicates that some 

form of error has incurred and notifies the master that the transfer was unsuccessful. 

RETRY indicates that the transfer has not yet completed, so the bus master should 

reinitiate transfers until it is complete, but a two-cycle RETRY response is required. 

SPLIT indicates that the transfer has not yet completed, but the bus master must retry the 

transfer the next time it may access the bus. However, a two-cycle SPLIT response  

is required. 

Arbitration ensures that only one master has access to the bus at a time. The 

central arbiter receives address and control signals from the bus master and then 

determines which device has the highest priority. In addition, the arbiter will manage 

requests from slave devices during SPLIT transfers. 

SPLIT transfers improve the utilization of the bus by separating (1) the operation 

of the master and providing the address to the slave from (2) the operation of the slave 

responding to the appropriate data. A SPLIT transfer occurs when a slave determines that 

a transfer will take a large number of clock cycles to complete. 

Figure 12 shows a standard ABH interconnection for a standard bus sequence. A 

typical operational scenario of AHB would involve a master requesting access to a slave 
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to perform a write operation. The arbiter will receive the request signal and determine 

whether the requesting master device has permission to access the slave device and 

whether the slave is available (i.e., not performing another operation). Assuming the 

master device has the appropriate access and the slave device is free from use, the arbiter 

then transfers the address and control signals to the slave device. The control signals 

provide the information, direction, and width of the transfer and indicate whether a burst 

transfer is required. During the transfer, the slave shows the status using response signals 

(i.e., OKAY, ERROR, RETRY, and SPLIT). 

 

 

Figure 12.   AHB interconnection (From [11]). 
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access). Data read and response signals from the multiplexor require a central decoder, 

which will select the appropriate signals from the slave device. 

Similar to I2C, the APB is designed for minimal power consumption and reduced 

complexity. APBs interface with low power, low bandwidth, and low-performance 

peripherals. The bridge interface between APB and ASB/AHB is the only bus master for 

APB, but is a slave device on the high-performance ASB/AHB. 

An APB slave has a simple and flexible interface. Its exact implementation details 

depend on individual design requirements. Typical operations of an APB slave connected 

to an ASB bus are read and write transfers; however, an APB slave interfacing with an 

AHB performs the same operations as an APB slave connected to an ASB, but also can 

perform back-to-back transfers and utilize multiplexing data bus implementations. 

Multiplexing supports combining read and write data buses into a single bus in which 

read and write operations never occur simultaneously. 

D. HYPERTRANSPORT 

The HyperTransport Consortium was formed in the early 2000s to develop the 

HyperTransport (HT) bus that would provide a flexible, reusable, and high-speed IC bus 

at a low cost. Improvements to CPU execution and other devices have placed increasing 

demands on external resources like off-chip memory, which are comparatively slow in 

speed, negatively affecting overall system performance. In July 2007, an AMD analyst 

discovered that 1 millisecond (ms) of latency was equivalent to $100 million in stock 

[12]. 

HT is a high-speed, high-performance, point-to-point interconnect scheme that 

can support a wide range of devices. HT provides a simple and scalable solution that can 

provide various applications with bandwidths up to 5.1 Gigabytes (GBs) [12]. The HT 

architecture comprises a series of devices that form tunnels. A tunnel is an HT device that 

performs some function and has a second interface that permits the connection of another 

device. The end device is a cave that represents the termination of a chain of devices that  
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connect to the same HT bus. A series of HT buses is an HT chain. Additional HT buses 

(i.e., chains) may be incorporated into a system by using an HT-to-HT bridge, as seen in 

Figure 13. 

 

 

Figure 13.   HT architecture overview (From [12]). 
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HT utilizes a packet-based protocol in which all information, addresses, 

commands, and data travel in packets, which are multiples of four bytes each (i.e., 4, 8, 

16, or 32 bits). The number of bytes in an HT packet will determine the length of the bit 

time for information to travel. Bit time is the length of time it takes a bit to travel at its 

predefined speed. There are two bit times per clock period. For example, given an 8-bit 

interface, one byte of packet information is sent one bit at a time. 

HT packets have ordering rules to avoid deadlock (e.g., two separate transactions 

are each dependent on the other completing first), support legacy buses, and maximize 

performance. HT packets are ordered based on rules. Rules are grouped into the 

following categories: (1) general rules, (2) rules for upstream Input/Output (I/O), and (3) 

rules for downstream ordering. Ordering rules apply to the order in which operations are 

detected by targets. 

There are three types of traffic flows, as seen in Figure 14: Programmed I/O 

traffic, DMA traffic, and Peer-to-Peer traffic. Programmed I/O traffic originates at the 

host bridge on behalf of the CPU and target or Memory Mapped I/O in one of the 

peripherals. These transactions are used to evaluate status and program configuration 

spaces. DMA traffic originates on the bus master peripheral and targets main memory. 

Traffic is managed so that the CPU may be relieved of the burden of moving large 

amounts of data to and from the I/O subsystem. Peer-to-Peer traffic is generated by an 

interior node and targets another interior node. 

 

 

Figure 14.   HT traffic flow (From [12]). 
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In summary, the HT bus protocol has information flowing in a unidirectional 

manner as it moves from device to device. This is contrary to I2C and AMBA traffic 

schema. As with a network protocol, information that travels on the HT bus is organized 

into data packets, with each device checking header information along the way to see if 

the packet belongs to that particular device. HT technology is high bandwidth, low 

latency, scalable, and extensible. HT eliminates the need for multiple local buses, 

resulting in simple design and implementation. HT has provided performance benefits 

that exceed present industry requirements and will ideally serve future market needs 

throughout the industry. 

E. WISHBONE 

Wishbone is a SoC bus for portable IP cores and offers perhaps the greatest 

flexibility in design methodology with semiconductor IP cores. Wishbone is a product of 

OpenCores, which is an open-source hardware community for professionals and 

hardware design enthusiasts. Similar to AMBA, the purpose of Wishbone is to ease the 

integration of SoC components through design reuse [13]. 

Wishbone’s features include: 

 Simple to understand and easy to use 

 Flexible and portable in support of object reuse 

 Designers have the benefit of determining their own Arbitration schema 

Objectives of Wishbone include: 

 Flexible interconnection between IP cores 

 Encourage design reuse through compatibility of IP cores 

 Ensure that the protocol and architecture is easy to understand by the 

developer and user 

Wishbone was given its name because its interface has a separate input and output 

for each device. Wishbone is intentionally ambiguous because it was intended to let 

designers use several designs written in Verilog or some other hardware description 

language (HDL) of their choice. 
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There are three common architectures associated with Wishbone: Shared Bus, 

Pipeline, and Crossbar. Designers will choose a shared bus interconnection when there 

are two or more masters that need to be connected to one or more slaves. The master 

initiates a bus cycle to a target slave, and then the target slave participates in one or more 

bus cycles with the master. An arbiter determines when a master may gain access to the 

shared bus. An arbiter acts like a traffic cop and dictates how shared resources can be 

accessed. The advantage of this configuration (shown in Figure 15) is that shared 

interconnection systems are relatively compact, and few resources are required for 

configuration and logic gate routing. However, it has a disadvantage with respect to the 

sharing of resources. Master devices potentially have to wait for access to the bus, which 

degrades the speed and efficiency of access to bus resources. 

 

 

Figure 15.   Wishbone shared bus (From [13]). 

A crossbar connects two or more masters so that each can access two or more 

slaves. In this configuration, a master initiates an addressable bus cycle to a target slave. 

An arbiter determines when each master may gain access to that slave. As seen in  
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Figure 16, a crossbar switch is more complex than a shared bus, but it offers significant 

advantages. First, a crossbar switch allows two or masters to access the bus at the same 

time as long as they are not accessing the same slave device. A crossbar switch also 

offers a higher data transfer speed. However, a crossbar switch does have some 

disadvantages compared to a shared bus. For example, a crossbar switch requires more 

interconnection logic, and it needs more resources to be able to route data. 

 

 

Figure 16.   Wishbone crossbar switch (From [13]). 
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Figure 17.   Wishbone pipeline (From [13]). 
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F. CORECONNECT 

CoreConnect is a SoC bus developed by IBM to be sufficiently flexible and 

robust in supporting a wide variety of system needs. It directly competes against  

ARM Ltd.’s AMBA SoC bus in the open market. CoreConnect resembles ARM’s AMBA 

and OpenCores’ Wishbone SoC buses in that both are promoted for their flexibility and 

reuse capabilities. CoreConnect’s specification has three bus architectures for 

interconnecting cores, which have their own library macros and custom logic design. 

These buses are Processor Local Bus (PLB), On-Chip Peripheral Bus (OPB), and Device 

Control Register (DCR). Figure 18 illustrates the CoreConnect architecture. 

 

 

Figure 18.   CoreConnect SoC (From [14]). 
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IBM CoreConnect 

Processor Local Bus 
ARM AMBA 2.0 AMBA  
High-Performance Bus 

Bus Architecture 
32, 64, and 128 bits 

Extendable to 256-bits 
32, 64, and 128 bits 

Data Buses Separate Read and Write Separate Read and Write 

Key Capabilities 

Multiple Bus Masters 
4 Deep Read Pipelining 
2 Deep Write Pipelining 

Split Transactions 
Bus Transfers 
Line Transfers 

Multiple Bus Masters 
Pipelining 

Split Transactions 
Burst Transfers 
Line Transfers 

 On-Chip Peripheral Bus AMBA Advanced Peripheral Bus 
Masters Supported Supports Multiple Masters Single Master: The APB Bridge 

Bridge Function Master on PLB or OPB APB Master Only 
Data Buses Separate Read and Write Separate or 3-state 

Table 1.   Comparison of CoreConnect and AMBA 2.0 architecture (From [14]). 

 The PLB and OPB buses provide the capability of data flow. PLB addresses 

performance, latency, and design flexibility issues such as: 

 Capable of providing split transactions 

 Latency reduction via address pipelining 

 Concurrent read and write operations 

 Bus requests and grant protocols may overlap with ongoing read/write 

transfers [14] 

PLB offers designers flexibility through the following features: 

 Completely synchronous operations 

 Allowing arbitration to resolve deadlock situations 

 Fully synchronous operations 

 Master driven operations 

 Slave error reporting [14] 

Figure 19 shows a typical PLB architecture, where each PLB master is attached to 

the PLB macro through separate address, read data, and write data buses. PLB slaves are 

attached to the PLB macro through sharing a decoupled address, read data, and write data 

bus with status signals for each data bus. 
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Figure 19.   PLB interconnection (From [14]). 
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OPB is designed to alleviate system performance bottlenecks by reducing the 

capacitive load on the PLB. Peripherals are generally suited for attachment to this bus. 

OPB provides the following features: 

 Fully synchronous protocol 

 Dynamic bus sizing to support byte, half-word, and word transfers 

 Sequential address protocol 

 Bus parking for reduced latency transfers [14] 

OPB will support multiple masters and slaves through multiplexing. This is 

suitable for a less data-intensive OPB and for adding peripherals to custom core logic. An 

OPB bridge allows PLB masters to gain access to the peripherals. The OPB bridge acts 

much like a slave device similar to the bridge in the AMBA architecture. However, an 

OPB bridge performs dynamic bus sizing, allowing for different devices with different 

data widths to efficiently communicate. 

Finally, DCR is a bus for lower performance status and configuration registers. 

DCR provides a maximum throughput of one read or write transfer every two cycles and 

is fully synchronous. DCR is relatively slow, utilizes a ring-type data bus, and provides 

the required connectivity while minimizing silicon usage [14]. 

CoreConnect is an open standard technology from IBM’s Blue Logic design. 

Designers have several advantages in creating and using macros that are compliant with 

CoreConnect. The common interfaces of CoreConnect have allowed for easy integration 

and provided valuable savings when implementing complex designs. 

G. SUMMARY 

Understanding I2C, AMBA, HyperTransport, Wishbone, and CoreConnect 

provides the foundation for developing threat models based on the FHM methodology. 

Based on the threat models, we can then find similarities in flaws and mitigations that 

will help us answer the original question asked in the introduction. 
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IV. IC BUS FLAW GENERATION AND CONFIRMATION 

A. INTRODUCTION 

Penetration testing will help determine whether IC buses can support system 

policies regarding confidentiality, integrity, and availability. It is a technique used to 

evaluate the security properties of a platform to determine whether flaws exist through 

simulating or conjecturing multiple attacks on a system. The result of penetration testing 

will ultimately lead to identifying high-risk vulnerabilities, determine the strengths and 

weakness of its security policy, and provide evidence for additional security 

countermeasures [15]. 

We will use FHM as a tool to discover, confirm, and mitigate any potential 

security flaws from the IC bus protocols discussed in this thesis. 

B. FLAW HYPOTHESIS METHODOLOGY (FHM) 

 FHM is a comprehensive and popular method to conduct penetration testing. It is 

used in this thesis to determine if there are security relevant flaws in the five IC bus 

protocols discussed in Chapter III that could violate hardware (i.e., platform)  

security policies. 

The approach to FHM is divided into four stages: Flaw Generation, Flaw 

Confirmation, Flaw Generalization, and Flaw Elimination. Typically, FHM is conducted 

by a group of people from various backgrounds and specialties who use Flaw Hypothesis 

Sheets to keep track of all stages and results during penetration testing. During Flaw 

Generation phase, they will review organization, architectures and polices of systems to 

conjecture possible flaws. During the Flaw Confirmation phase, they will prioritize the 

hypothesized flaws starting from the most severe based on predetermined criteria. Then, 

they start analytically determining which hypothesis could be true or false before moving 

on to live testing (i.e., using field-programmable gate arrays [FPGAs], protocol analyzers, 

etc.). Once all the hypotheses have been confirmed to be true, false, or untested, the 

group will move on to the Flaw Generalization phase. During this phase, the team 

discusses the commonalities that were found and the impact that each flaw could have on 
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a system in hopes of discovering any greater flaws that exist. Upon completion of the 

Flaw Generalization, the team moves on to Flaw Elimination, in which the group 

attempts to determine how to mitigate the flaws in order to strengthen the security of the 

system [15]. 

 Unfortunately, in this thesis, we cannot be completely true to the FHM. The 

primary weakness in our approach is not the lack of a team (as you can always stimulate 

a discussion with colleagues) but, rather, the lack of a product against which to test. Thus, 

we cannot discover implementation flaws (relative to the design), although we can detect 

design flaws from analysis of documentation. We will concentrate on design flaws 

discovered through hypothesis of malicious behavior by the bus masters and slaves who 

have been corrupted. Vulnerabilities due to corrupted bus logic are too broad to discuss in 

any complete way. This thesis intends to remain as true to the FHM as possible. In the 

first stage, we will generate suspected flaws that could violate a systems security policy 

on confidentiality, integrity, and availability from each IC bus protocol. When developing 

flaws, we must first consider our threat model and a use case scenario for each bus, while 

keeping in mind the bus policies, specifications, and operations discussed in Chapter III. 

For every flaw generated, we have to find how or if we can obtain unauthorized services, 

cause damages (i.e., weaken the integrity), or implement a Denial of Service (DoS) to the 

user. By answering some questions below that were developed from page 279 of  

Clark Weissman’s paper on penetration testing will help lead us into generating a list of 

suspected flaws for each of the bus protocols [15]: 

 Past experience with flaws in other similar systems 

 Ambiguous, unclear architecture and design 

 Circumvention/bypass of “omniscient” security controls 

 Incomplete design of interfaces and implicit sharing 

 Deviations from the protection policy and model 

 Deviations from the initial conditions and assumptions 

 System anomalies and special precautions 

 Operational practices, prohibitions, and spoofs 

 Development environment, practices, and prohibitions 
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 Implementation errors 

During Flaw Confirmation, there will be no testing of any of these flaws on  

FPGAs or equivalent software programs (e.g., Xilinx); however, we will make our 

assessment on careful analytical research and reasoning that is grounded in supporting 

documentations (specification manuals, prior research, etc.). We can leave live testing for 

future thesis work. Upon completion of all flaws confirmed, we will organize them based 

on priority. Flaw Generalization is where we assess the underlying security weakness 

found in each bus. This work will be addressed in Chapter V, where we will analyze and 

compare flaws found and determine if there are any similar or different weaknesses found 

on the IC buses. Flaw Elimination will be addressed in Chapter VI, where we will 

recommend analytical and theoretical methods to repair or mitigate IC bus flaws. 

C. DEFINING THE THREAT MODEL AND ATTACKER 

A design-centric threat model will be used during the flaw generation phase. The 

attacker sets his/her goals to disrupt the IC bus security policy for which it is set to 

provide safe and reliable communications among devices through the use of designated 

reference monitors. Reference monitors are designed to provide protection against 

unauthorized use and unauthorized modification during bus operations. Examples include 

protection against service denial, separation of processes, and unauthorized reading or 

writing to various slaves for which a master is not intended to read and write from. 

Furthermore, if we assume that if an attack was conducted through subversion, then we 

can say the entire bus security policy is completely violated. Thus, we will not discuss or 

mention any type of bus subversion within our flaw generation process. 

We must first define our attacker. Simply put, the attacker is anyone! The attacker 

could be an inside or outside threat, who’s an amateur enthusiast motivated to prove him 

or herself with no money and little resources, or it could be the state- or organization-

sponsored hacker with unlimited resources such as logging tools and protocol analyzers. 

The attacker is looking to break the bus protocol through the discovery of vulnerabilities 

from its policy, specification, and operation. 
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We must mention specifically that the attacker will not physically exploit the 

board circuitry or physical bus. However, we assume the attacker will use user-level 

processes (i.e., application programs) to attack the bus. Additionally, the threat of a 

corrupted OS will not be considered as part of our threat model and/or scenarios. 

D. I2C FLAW GENERATION 

 I2C is a free to everyone without any licensing agreements and can be obtained 

from trusted sources like Philips semiconductors or untrusted sources such as 

OpenCores.com, Google searches, blog forums, Wikipedia, etc., from which a user of the 

bus protocol cannot verify how or if the bus protocol was properly tested and verified. 

They must assume everything works according to specification if they do not have their 

own verification tools (e.g., protocol analyzer) or a working knowledge of the protocol. 

For those designers and manufacturers considered to be a reliable source of the 

I2C bus protocol, such as Philips, I2C have noted corrupted operation and specification 

flaws. An attacker can use this to exploit these vulnerabilities to their advantage. On 

Philips’ I2C official website, a section is dedicated to listing all the verified flaws with 

the I2C buses [16] policy, specification, and operation. Notably, there are a significant 

number of issues with implementation errors and developmental practices. 

Implementation errors include unstable power supply and incorrect voltage thresholds 

that are unable to recognize high and low levels on the SCL and SDA states. Consider a 

flaw called unstable power that will result in DoS, which is referenced from the I2C 

homepage. A user has a hardware device that carries I2C as its bus and it is unable to run 

any programs because the I2C bus cannot support the power requirements. That would 

effectively deny the user any service from the device. 

Another significant implementation issue that has been noted by the I2C 

homepage [16] is that I2C can be too simple of a design if it is implemented on a 

complex piece of hardware. Imagine a flaw called oversimplifying that threatens the bus 

availability, which we are able to reference from the I2C homepage. Essentially, if a user 

implemented an I2C bus that is too simple on a complex piece of hardware, then I2C 

would be unable to effectively support the entire system and its policies because the bus 
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would be unable to recognize error conditions, arbitration signals, or negative 

acknowledgements from slave devices. This essentially renders the device useless and 

leaves the user unable to use the device resulting in DoS. 

Additionally, when deviations from the policy and model were discovered during 

a master device transfer operation, the slave device suddenly stopped acknowledging 

bytes from the master (which can happen during any stage of the transfer). We can 

hypothesize an ignore flaw that threatens the buses’ availability, which is referenced out 

of the I2C homepage. The user implements a poorly written I2C bus protocol and, during 

an operation, the slave stops acknowledging data bytes. This would be attributed to a 

slave device being unable to interpret or misinterpret data from the master device or slave 

missing a clock cycle [16]. The bus being unable to interpret data results in having to 

restart the operation from the beginning. 

From a security standpoint, we need to be concerned that there is no single 

manufacturer of the I2C bus protocol. The manufacturing of the I2C bus is inconsistent 

and there is not one single source to point to or hold accountable if the bus is corrupted, 

whether it is intentional or unintentional. I2C is a free-for-all and a user must use it at his 

or her own risk, with no liability and accountability held to the vendor or to the individual 

that posted the bus code. Each manufacturer and designer of the protocol implements and 

verifies the bus protocol in his or her own way, which is not consistent with any other 

designer. The I2C bus developed by Phillips will have a more rigorous process for 

development, verification, and distribution than that of an enthusiast who wrote an I2C 

bus code and posts it on OpenCores. From a security perspective, this is not comforting 

because there is no trust in the product that is being used. This is equivalent to having 

kids eat unknown candy from strangers. Where is the parent (i.e., the appropriate vendor) 

to verify that everything is okay? 

Inconsistencies of I2C protocol methods of attainment and verification found on 

the I2C bus ultimately lead us to not trust its policy. The bus protocol can easily be 

copied from Wikipedia or an unknown developer who posted the code on a blog forum 

without putting any effort into using a protocol analyzer before implementation. Most 

importantly, the manufacturers of I2C might not make significant changes. I2C was 
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marketed as a simple, easy-to-use, and flexible protocol. Significant changes that need to 

be implemented could destroy its marketability and appeal. Everything read from the I2C 

specifications manual and official homepage [16] has lead me to believe that I2C has zero 

security-relevant properties. It is one of the first implementations of an IC bus protocol 

when hardware security ideas were unimaginable in the 1980s. The specifications, policy 

issues, and implementation errors cited from its homepage could lead to DoS, thus 

affecting availability properties. However, without consistency in development, 

verification, and distribution, this can open the doors to numerous attacks. We can assert 

that the I2C bus is designed to be told how to act and behave on the IC platform based on 

preprogrammed protocols, and security and protection is left to the master and slave 

devices no matter how malicious they can be. 

For example, you will not find an I2C on supercomputers, or high-tech 

equipment. I2Cs are low power and physically very short in length. I2Cs are found 

mostly in TVs and radios. However, it is plausible to have an I2C on a smart phone or 

PDA [17]. In our scenario, we have a malicious I2C bus protocol that was taken from an 

untrusted online source because the manufacturers of a PDA were looking for the 

cheapest possible build to maximize profits. The I2C bus would have two masters, which 

are the library and memory, with four slaves, which are the display screen, sensor with 

digital IO, and two power sources. The I2C protocol was copied from a blog for which 

the attacker posted it online and had added comments from fake users. The comments 

posted were boasting how well-written and well-functioning the bus protocol was; 

however, the attacker failed to mention that the bus was corrupted to allow for the slave 

devices (screen and sensor) to be exploited. 

One of the biggest flaws, and not necessarily an intentional one, is with the 

protocol policy. We can hypothesize a scenario known as infinite wait state that threatens 

the I2C bus availability. In the I2C specification manual, Section 6.1 (found on page 7) 

[10], it states that the WAIT state in I2C is designed for a slave (display) to hold down 

the SCL line and stop all transmission of the master (i.e., Memory) so it may perform 

some other function or take the necessary time to process data. Only the display device 

(i.e., the slave that imposed the WAIT state) may lift the SCL and end the wait state; 
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however, there is no a time limit or function to request a release, or even a reset to the 

bus. The display can hold the SCL forever and stop all bus transactions on the I2C bus, 

thus rendering the entire PDA useless imposing a DoS. Figures 20-22 show a pictorial 

representation that the author designed. 

 

 

Figure 20.   Exchange of data. 

 During this scenario, a bus operation begins as any other normal operation. Since 

that was already shown in Figures 4-10, we start with the initial exchange of data 

between Master 1 and Slave 2. 
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Figure 21.   I2C bus in a wait. 

 As depicted in Figure 21, it is not uncommon to have a bus put into a WAIT state. 

The dash along the SCL line indicates that Slave 2 has held down the clock line to stop 

any additional transmission of data. 

 

 

Figure 22.   I2C bus in an extended wait state. 



 41

 In Figure 22, the bus was never designed to limit how long a wait state has to be 

or can be. This can eventually lead to an infinite amount of time, or the user becomes so 

impatient that he or she turns off the device to reset the operation, with the risk that it 

could happen again. 

We can generate a covert delivery flaw that threatens I2C confidentiality/privacy 

policy. The design and concept of I2C found in Sections 2 and 3 (page 4) of the I2C 

specification manual states that the devices share the same wire and respond based on a 

unique address when information is carried across the SDA line. It also states that the 

protocol must have some form of communication established in order to not cause 

confusion among devices [10]. This leads the author to believe that since the devices are 

on a shared bus architecture and connected to SDA, they are able to see what traffic is 

being passed and are only responding to what is addressed to that particular device. We 

can hypothesize a flaw that if there was a misbehaving device on the bus, then this device 

could perform unauthorized reading of data from a device such as an I/O sensor. If main 

memory conducts a write transaction to the display, there is nothing that protects the data 

from being read. Devices are programmed to detect whether the bus is free or busy, in 

order to prevent a number of collisions. Furthermore, once the transaction has stopped, 

the sensor has the ability to output data across a network. Specifically, it can be 

configured to send data directly to a particular network where the attacker is attempting 

to gain valuable information. Figures 23-26 depict another design by the author 

demonstrating this. 



 42

 

Figure 23.   Reading of data. 

 The operation begins as any other operation. Figure 23 demonstrates that 

all devices share the same data and clock line. The devices have to be able to read the 

data line to know whether the bus is busy or free to use. 

 

 

Figure 24.   Terminating the bus operation. 
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Figure 25.   Data sent to a network device. 

 In Figure 25, once the operation was terminated, Slave 1 sends all the data 

collected to the network device. 

 

 

Figure 26.   Data being sent to the Internet. 
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In Figure 26, once the data was sent to the network device, it is automatically 

forwarded off the network and into the Internet, where the attacker is able read the 

captured data. 

We can generate an I2C man in the middle attack (MITM), which threatens I2C 

authentication and integrity properties. Citing again from Sections 2 and 3 of the I2C 

specification manual (page 4), each device has to be assigned a unique address. It also 

states that only one master and one slave can participate on the bus at a single time. 

However, the design and addressing scheme is left to the designer and manufacturer [10]. 

In this scenario, the library device could pretend to be the main display as it accepts and 

sends acknowledgement to the main memory in the beginning of an operation. The main 

memory will send write data to the library device believing it is the display device. In 

another scenario, the main memory is writing data to the display (as with the past two 

scenarios), but the library module is configured to be malicious and can read and have the 

same permissions as the display device during an operation. The library device is coded 

to recognize certain bit strings and if a match occurs, it interrupts the operation through 

initiating a WAIT state on the clock, modifies the data, ends the WAIT state on the clock, 

and then allows the modified data to reach the display device. Figures 27–31 depict the 

malicious insertion of data by another slave device. 

 

Figure 27.   Slave 1 captures data. 
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Figure 28.   Slave 1 puts the bus in a wait state. 

 

Figure 29.   Slave 1 rewrites the data. 
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Figure 30.   Data is forwarded on to Slave 2. 

 

Figure 31.   Slave 2 acknowledges the bad data. 
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E. I2C FLAW CONFIRMATION 

 We can only partially confirm our hypotheses. While they are untested, we assert 

they are true based on grounded documentation and logic. Unfortunately, we can never 

fully confirm these hypotheses to be true or false because implementation testing is not 

within the scope of this thesis. 

 The unstable power flaw came directly from the I2C official homepage [16]. If 

the power is unstable, and it loses power, the device completely shuts down. Also, when 

a device does not directly acknowledge a transaction, then that is, by definition, DoS to 

the user. 

 The oversimplifying flaw came directly from the homepage of I2C as well [16]. It 

stated that when buses are configured to be too simple or generic to a complex piece of 

hardware, then the bus will not respond to commands because it is not programmed to 

recognize them. 

 The ignore flaw can be confirmed from the I2C homepage [16] because it directly 

states that during operations, the slave device has been known not to acknowledge data 

sent from the master device. 

 Concerning the our infinite wait state flaw, Section 6 (page 7) of the I2C manual 

directly stated [10] that a slave can hold the entire operation in a wait status until it is 

ready to proceed. Nowhere within the specifications does it state that there is a limit or a 

reset, which drives our point that this type of hypothesis is theoretically true. 

 We can analytically assert the covert delivery flaw to be true because the design 

specification of the I2C manual (page 4) [10] only states that the devices need to have 

assigned addresses to which the information is being sent to avoid confusion. Since I2C 

is a shared bus, the devices have to see what is on the SDA in order to know if they are 

being addressed. The author is lead to believe that this hypothesis is theoretically true in 

that the recognition of devices and unique addressing is left to the designer to figure out. 

There is no specific guidance. An attacker can design and code this malicious flaw and 

then publish it. 
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 Finally, given the I2C MITM attack flaw, it can be asserted theoretically true 

based on loose policy guidance found in Sections 2 and 3 of the I2C specification manual 

[10]. A lot of the protocol is left to the designer to set the communication protocols, 

which leads to an infinite number of possibilities if an attacker was to design the I2C bus 

protocol and post it on websites and forums for unsuspecting users to download. 

F. AMBA FLAW GENERATION 

 ARM Ltd.’s AMBA is a designer’s SoC bus of choice. They are its only 

distributers and utilized on most SoCs, and frequently applied as part of research and 

hardware security testing when SoC devices are needed. The advantage of AMBA as one 

of the first SoC buses is its protocol familiarity and its product’s life cycle is highly 

controlled throughout development and distribution. ARM also sells a protocol analyzer 

and other developer tools to constantly monitor and review abnormal protocol activity. 

ARM Ltd. is constantly improving the AMBA products via its version updates and 

evolving bus protocols (e.g., AHB, ASB, Advanced eXtensible Interface [AXI], etc.). 

AMBA is built for reuse and designed to be modularized, which allow for updates as 

needed with minimal effort for effective integration. This effectively creates Trusted 

Computing Base (TCB) subsets in order to have and maintain an effective and 

trustworthy policy. 

 AMBA holds the advantage over SoC buses discussed in Chapter III because it is 

not too simple and unverified during its development cycle like Wishbone. Wishbone 

allows too much independence and trust in developers and users, which can lead to 

malicious activity. Also, it is not overly complicated like CoreConnect, where there could 

be some unknown and unintentional policy errors and/or possible leads to  

covert channels. 

 AMBA’s protocols and timing provides specifications for timely and reliable 

service [11]. It holds the advantage over I2C in that is has implemented bus resets to 

eliminate design availability flaws such as infinite WAIT states, interrupts, deadlocks, 

etc. However, hardware security experts have conducted some extensive research and 

found AMBA’s vulnerability lies within the arbiter and address decoders. Bus arbiters 
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have fixed protocols, but priorities and accesses are set to the desired policy of the owner 

of the hardware device. Depending on how the owner configures device priorities and 

accesses, then the attacker can seize the opportunity to inject a Trojan Horse that can 

cause MITM attacks, DoS, or unauthorized viewership [18], [19]. 

 In our flaw hypothesis scenario, let us assume that an AMBA resides on a SoC 

that has been placed on a tablet product. AMBA has the following attached components: 

DMA bus master, high-bandwidth External Memory Interface, high-performance ARM 

processor, and high-bandwidth on-chip RAM, which are bridged to a timer, keypad, and 

peripheral input and output device. AMBA has been configured with a malicious 

arbitration scheme as an oversight (tools for protocol analysis were avoided to save 

money). The user attempts to read and write from a text file, which initiates  

bus traffic. 

 We can conjecture a bus hogging flaw that violates AMBA availability policy 

given that the AMBA rev 2.0 specification manual states (pages 1-9 and 4-20) [5], “the 

arbitration protocol is defined, but the prioritization is flexible and left to the application” 

In addition, (page 3-39) [5] it states that the arbiter can adjust the arbitration priorities and 

grant signal changes. The bus hogging flaw can be exploited by the user intending for the 

keypad to write to direct memory access via the ARM processor. However, another 

device is currently using the bus and has been given higher priority over all other devices 

and effectively continues to hog the bus, to never allow sharing with other devices. This 

creates a DoS to the user of the bus. 

 In another scenario, we can hypothesize a DoS flaw that affects AMBA’s 

availability policy given the same reference as before. If the keypad accesses the DMA 

bus master, however, the address decoder is programmed by the attacker to deny any 

interaction between the DMA and keypad, thus imposing another DoS. 

 Additionally, we can consider a full access flaw that violates AMBA’s 

confidentiality, integrity, and availability policy given the initial references provided if 

the on-chip RAM is given complete read and write to the DMA device. Configuration 

policy states that this is not supposed to happen, but if the arbitration policy was 
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maliciously configured to do so, then this could occur. During bus operations from RAM, 

the DMA can view, modify, or block. This would violate confidentiality, availability, and 

integrity of the system. 

G. AMBA FLAW CONFIRMATION 

 For AMBA, we were able to generate three flaws that could be exploited through 

violating AMBA’s arbiter and address decoder. The first flaw was a bus hogging flaw 

that exploited AMBA’s policy of allowing one device to have top priority over all other 

devices, which enables the device to continue to use the bus and not allow other devices 

to use it—thus effectively creating an availability concern. 

 With our DoS flaw, we were able to conjecture that the keypad device 

permissions are set to deny any interaction between itself and the DMA. This is because 

an attacker can allow for the arbiter and address decoder to deny access to the device 

even though the protocol would stipulate that it should have access to it. 

 Finally, full access flaw allows a DMA device to have complete read and write 

access to RAM; however, platform policy stipulates it is not supposed to have either read 

or write access. Again, this comes from allowing the attacker to insert and manipulate 

decoder and arbitration actions that would allow a device to have full privileges on  

the bus. 

 We can assert these entire AMBA flaw hypotheses to be true based on research 

conducted by L. Kim and J. Villasenor on System-on-Chip Bus Architectures for 

Thwarting Integrated Circuit Trojan Horses and Trojan Resistant On-Chip Architectures 

[18], [19]. The research and testing they conducted found methods that would identify 

run time attacks of Trojan Horses based on unsecure arbiters and address decoders. 

Specifically, their research proved that through manipulation of arbiters and address 

decoders, it was easy to manipulate bus and devices access to the attacker’s advantage. 

Due to their research, we can theoretically assert our hypothesis to be true. 
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H. HYPERTRANSPORT FLAW GENERATION 

HyperTransport is different from the five other IC buses discussed and analyzed 

thus far. HyperTransport connects computer processors to one another and sends data at 

extremely high speeds. HyperTransport consortium and HyperTransport Center of 

Excellence is dedicated to designing, maintaining, and upgrading this bus protocol [12]. 

 HyperTransport is a relatively new bus protocol (i.e., developed and distributed 

within the past 10 years) so it is unexplored in its security-relevant properties. However, a 

graduate student at Massachusetts Institute of Technology Andrew Huang, was able to 

test the security properties of HyperTransport bus protocol on an Xbox [20]. In his 

research, he was able to physically extract data from the HyperTransport bus through an 

eavesdropping technique known as probing the bus. He then extracted all its contents 

onto an FPGA and then read from it. The challenge, though, was to probe the high-speed 

bus without destroying the integrity of the data. Ultimately, he proved that, given 

knowledge of board circuitry, we can physically extract data from a bus. 

 Reviewing the architecture and protocol of HyperTransport in Chapter II and 

Chapter 11 (page 258) of the HyperTransport specification manual [21], data packets, 

much like network packets, travel up and down a tunnel where each processor in turn 

reviews each data packet to see if the address belongs to them or not (i.e., data moves in a 

serial direction). If not, the packet of information will continue to travel to its intended 

processor. HyperTransport has some of the same characteristics as network addresses, 

and knowing this information, we can now conjecture that processors have to be assigned 

addresses for identification. 

 Image HyperTransport bus was placed on an ATI Radeon Xpress 200 graphics 

card. The card has an Advanced Micro Devices (AMD) processor, and the 

HyperTransport bus transports data from one SoC device to other SoC devices in a  

point-to-point architecture. We can imagine multiple MITM attacker scenarios using 

HyperTransport. An attacker can exploit a read-write-deny MITM flaw that violates 

HyperTransport confidentiality, integrity, and availability policy. The attacker could have 

inserted a malicious processor that can be configured to have multiple SoC addresses and 
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have the ability to spoof another address, just as networks can. If a device wants to send a 

packet of data down the bus, and if the malicious processor is physically placed before 

the data’s intended destination, it could have an address assigned to read and write to the 

originator (i.e., spoofing the recipient) or it could just hold on to it, denying the rightful 

processor access to the data. 

I. HYPERTRANSPORT FLAW CONFIRMATION 

 HyperTransport documentation supports that each processor has to be assigned a 

unique address and there is ambiguity and leeway pending which device the bus is to 

implement on. Previous attacks on other systems prove that devices can be configured to 

spoof multiple addresses and behave as if it were the intended device. 

 We can assert our read-write-deny MITM flaw to be true because according to 

HyperTransport policy, if the malicious processor is placed in the right position, it must 

be able read the packet address before sending it on [12]. If the addressing scheme were 

set to overlap another device, then it would be able to intercept the data before all other 

processors and read, modify, impersonate, or deny passage of data. 

J. WISHBONE FLAW GENERATION 

 From a security standpoint, the Wishbone architecture and policy suffers from 

ambiguous guidance, and flexible designs and protocols. Manufacturers have to rely on 

OpenCores to ensure the design will behave according to the rest of the SoC device 

policy [13]. Wishbone is built either on a loose set of guidelines and rules, and there is 

little support to ensure its accuracy, enforce its policy, and clarification on  

its documentation. 

 Wishbone also lacks a lot of the advanced default support that other SoCs possess, 

such as split transactions and power management. Wishbone is designed to be primarily 

used for small to mid-range embedded systems [13]. Wishbone is relatively low on 

technology, support, and trust. Realistically, most manufacturers will never use Wishbone 

on their SoC devices. Wishbone is meant for the mid- to low-level hardware enthusiast 

who pursues this as a hobby. 
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 The design and policy of the bus is based on the system designer’s preferences 

and specifications, with a limited number of rules that are set by the OpenCores 

community. In accordance with OpenCores, Wishbone specification manual design 

requirements include revision levels, types of interfaces, signal names defined, port sizes, 

port granularity, and a properly filled out Wishbone data sheet [13]. With such low-level 

guidance, there can be numerous flaws and we can even assert and confirm that any flaw 

found in a SoC bus, such as AMBA and CoreConnect, would be possible in Wishbone 

because the policy can easily be manipulated to emulate the other two SoC buses; 

although Wishbone could include mechanisms to prevent these flaws. 

 An attacker is easily able to design a weak, flawed, and malicious bus policy and 

post it to the OpenCores community webpage. Aside from Wishbone’s ambiguous and 

weak policies, its architecture can be easily exploited (consider the three common 

architecture design flaws discussed in Chapter III). We are going to use the same scenario 

as we did with AMBA to keep SoC bus scenarios consistent. However, in this scenario, 

the manufacturer of the tablet is struggling in the current economy and to lower their 

expenses, they are using a Wishbone SoC bus that they found off on OpenCores.com. 

We can speculate a Point-to-Point (P2P) read-write-deny flaw that violates 

Wishbone’s confidentially, integrity, and availability properties. The manufacturer selects 

a P2P Wishbone architecture to implement their SoC. The flow of data will go between 

three IP cores. The center IP core is the high-bandwidth external memory interface. The 

other processors have to go through the external memory interface (because point-to-

point has to go from device to device in a linear manner); however, we hypothesize that 

the external interface is untrusted. When the P2P bus was designed, the designer did not 

define addressing for each device. The external device can easily stop data flow based on 

destination addresses, or it can simply be reprogrammed to modify certain messages that 

it is programmed to recognize. All of this would contribute to violations of 

confidentiality, integrity, and availability. 

 Let us also consider a shared bus read-deny flaw that violates Wishbone’s 

confidentiality and availability policies. The manufacturer downloaded an untrusted 

Wishbone bus and used a shared bus architecture. Under this schema, only one master is 
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allowed access to the bus at a time. If the DMA bus master was malicious, it could easily 

put the bus into a wait state and keep it deadlocked if the designers of the bus did not add 

a reset function to the bus. Also, since the architecture is shared, there is nothing that can 

stop other devices from reading from one another while data is passing on the bus. These 

two possible flaws would violate system availability and confidentiality. 

 Finally, consider a Crossbar read-deny flaw that exploits Wishbone’s 

confidentiality policy. Under the Crossbar bus architecture, there can be more than one 

master device in operation at the same time, but not to the same slave device. Let us also 

assume the design of arbitration scheme was rushed. The DMA bus master could have 

priority over every device on the entire SoC, which would create availability issues. Also, 

with a poorly written protocol, all the devices on the bus could see the data as it passes 

through the bus, which creates confidentiality issues. 

K. WISHBONE FLAW CONFIRMATION 

 Wishbone is such a generic protocol with most of the interpretation left to the 

designer (who may get it from OpenCores), we could easily hypothesis more flaws. The 

less control, trust, and fewer restrictions on a bus policy, the more flawed it could be. We 

can assert all of these to be true because the Wishbone specification requirements do not 

state any guidance regarding protection and manipulating of device and arbitration 

schemes [13]. Wishbone is also found in OpenCores.com, which is a free website to join, 

publish, and download [22]. Nothing is verified when published or downloaded, which 

leaves the victim of a malicious bus at the mercy of the person who published it. 

 Wishbone suffers from a lack of standards, guidelines, support, and technical 

specifications. Any designer—whether they are experienced or inexperienced—can write 

and post a Wishbone bus protocol. The protocol may be designed according to 

specification, but that does not mean it is a secure bus. 

 We can confirm a P2P read-write-deny flaw that allows a designer to create a P2P 

Wishbone architecture and have the external interface act in a malicious sense of 

stopping every piece of traffic to either read from it, write to it, or block it because of 

poor device addressing assignments. 
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 Similarly, we can confirm our shared bus read-deny flaw, which allows for a 

malicious device to read everything on the bus or have maximum priority over all other 

devices and thus completely hog the bus from other devices. 

 Lastly, we can confirm our crossbar read-deny flaw exploit when a bus was 

quickly and hastily designed that allows for a device monopolization on the bus, which 

essentially causes hogging as well as poorly set permissions that allow a device to read 

the traffic off the bus. 

L. CORECONNECT FLAW GENERATION 

 CoreConnect is an IBM competitive market response to ARM Ltd.’s AMBA 2.0. 

They both share similar features (refer to Table 1 in Chapter III); however, CoreConnect 

has a much more complicated build than its SoC competitors. PLB and OPB buses both 

have their own separate arbitration schema, with the DCR ensuring that the bus is 

behaving according to its logic and specification. The devices found on the bus are 

broken into smaller subsets to help ensure stronger system security and reuse. For 

example, the external peripheral controller device is divided into three sections. There is 

a section for Synchronous Dynamic Random Access Memory (SDRAM) ROM, external 

peripheral device, and external bus memory [14]. 

CoreConnect is built on complicated logic gates. To ensure that flaws do not exist 

in the architecture, formal verification must be done. William Lee of IBM and  

Amit Goel of Carnegie Mellon University conducted a formal verification study on the 

PLB arbiter. Verification was conducted through a three-phase approach of (1) Modeling, 

(2) Specification, and (3) Verification [23]. Studies found that the PLB arbiter had a 

number of vulnerabilities and specification flaws including ambiguity, incompleteness, 

redundancy, and inconsistencies. 

A flaw called re-arbitration denial was discovered in which slaves would request 

for re-arbitration (i.e., secondary request), which has to be passed onto the master, who 

could ignore it. We can easily hypothesize that an arbiter would fail to pass on the request 

of a master device for a particular slave device, which leads to a DoS. 



 56

Another notable design flaw was that of large latency flaws for which the bus 

performs-locking requests during read and write operations. If we can imagine that if one 

of the buses were busy, the bus-locking request would be held off, during which another 

master device can obtain access to the slave before the other master is completely 

finished. 

However, it was also discovered that the master that had its request terminated 

could regain the bus, which introduces the potential of a separate vulnerability known as 

a request termination flaw that can be exploited for reading and writing data while 

denying other devices access to the slave device. Problems also arose with timeout 

conditions throughout various stages of the protocol, which resulted in unknown factors 

and eventually lead to DoS to the user [23]. 

 Traditional methods of building this IC bus architecture is used to create modular 

reuse and upgrades as well as smaller TCB subsets for stronger security for platform 

systems than its competitor, which should ensure a secure and more reliable build. 

CoreConnect is designed and processed to similar business control solutions such as 

AMBA. However, like AMBA, the arbitration schema is determined by the manufacturer 

of the device, which can lead to malicious activity. Any kind of flaw that was 

hypothesized and confirmed to be true in AMBA could be hypothesized and confirmed to 

be true for CoreConnect. 

 CoreConnect is a complicated bus to analyze and understand, but it would seem 

that its main flaw is that of arbitration ambiguities that lead to integrity and 

confidentiality flaws. 

M. CORECONNECT FLAW CONFIRMATION 

 We have simply confirmed our hypotheses based on the research conducted by 

William Lee and Amit Goel from their live experiments that they published. 

Additionally, much like AMBA, the arbitration and address decoding sequence is similar 

to CoreConnect based on the CoreConnect specification white paper found on page 7. 

That explication states “Design toolkits are available for each of the on-chip buses. These 

tool kits contain master, slave, and arbiter models” [14]. 
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 Through the research of Lee and Goel, we can confirm our rearbitration denial 

flaw for which slaves request for rearbitration and the master device completely  

ignores it. 

 Additionally, the large latency flaw for which caused because a locking request is 

delayed during a master and slave device operation and because the locking is not set, 

another master device can interrupt. 

 A request termination flaw can be confirmed for a master device that previously 

had access to the slave currently in use and can regain access to the bus even though 

another master and slave should have rightful access. 

N. FLAW PRIORITIZATION 

 With well over 16 flaws generated, FHM calls for prioritization of flaws within 

each product or system. Typically, we should not prioritize the IC buses because we have 

not worked with any of their implementations directly; only read, reviewed, and analyzed 

their specification. However, if we had worked and tested actual implementations of each 

protocol, we would prioritize them starting with (1) AMBA,  

(2) CoreConnect, (3) HyperTransport, (4) Wishbone, and (5) I2C. This order is motivated 

because of platform use and product distribution. For example, since SoCs are commonly 

found on a platform and AMBA is by far the most popular choice, this should be the first 

priority, whereas I2C would be the last. I2C is last because it is typically implemented on 

TV and radio, and damage level and criticality would be minimal compared to other 

buses. There is no right choice in this matter; it is just what we would have decided to 

prioritize in this thesis if we were able to actually test these buses. 

 We can and will prioritize each IC bus flaw based on bus policy violations. The 

highest priority flaws will be that which exploit bus integrity, followed by confidentiality, 

and then availability. This is because integrity violations are considered to be more 

damaging than confidentiality. Again, other teams can prioritize in their own way, but in 

this thesis, we set our flaw priorities on integrity, followed by confidentiality and 

availability. Tables 2–6 prioritize each bus flaw. 
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I2C Flaw Prioritization 
Priority Flaw Policy Violation 

1 I2C MITM Integrity/Confidentiality/Availability 
2 Covert Delivery Confidentiality 
3 Infinite Wait State Availability 
4 Ignore Availability 
5 Oversimplifying Availability 
6 Unstable Power Availability 

Table 2.   I2C Flaw Prioritization. 

AMBA Flaw Prioritization 
Priority Flaw Policy Violation 

1 Full Access Integrity/Confidentiality/Availability 
2 DoS Availability 
3 Bus Hogging Availability 

Table 3.   AMBA Flaw Prioritization. 

 Any flaw that we were able to generate for AMBA, we could also generate for 

CoreConnect, Wishbone, and any other SoC bus. 

HyperTransport Flaw Prioritization 
Priority Flaw Policy Violation 

1 Read-write-deny MITM Integrity/Confidentiality/Availability 

Table 4.   HyperTransport Flaw Prioritization. 

Wishbone Flaw Prioritization 
Priority Flaw Policy Violation 

1 P2P read-write-deny Integrity/Confidentiality/Availability 
2 Shared bus read-deny Confidentiality/Availability 
3 Crossbar read-deny Confidentiality/Availability 

Table 5.   Wishbone Flaw Prioritization. 

CoreConnect Flaw Prioritization 
Priority Flaw Policy Violation 

1 Rearbitration Availability 
2 Large Latency Availability 
3 Request Termination Availability 

Table 6.   CoreConnect Flaw Prioritization. 
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O. SUMMARY 

In this chapter, we explained FHM and conducted the first half of the process. 

Chapter V will attempt to generalize flaws individually discovered in hopes of finding 

bigger flaws and discover overarching issues with the IC buses in an effort to mitigate 

these vulnerabilities in order to strengthen the security of hardware platforms. 
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V. FLAW GENERALIZATION 

A. INTRODUCTION 

 Our analysis thus far leads us to believe that all buses are designed and built to 

serve one purpose, even though there are different methods on how to do so. Essentially, 

a bus is a service provider for those devices or processors placed on the platform. 

Ultimately, one device needs another device to perform a read, write, or execute 

instruction; otherwise, nothing gets done. IC buses are designed to ensure that data is 

delivered from source to destination in a quick and reliable manner, which includes 

ensuring that the confidentiality, integrity, and availability security policy of each IC bus 

is adhered to. 

 In this chapter, we generalize the exploitable flaws we have generated and 

confirmed from Chapter IV in hopes of discovering the impact and greater common 

vulnerabilities that lie within general-purpose IC buses. Determining the impact and the 

big picture of a IC bus flaw will not only help us understand our generated flaw better, 

but perhaps find system-wide approaches that ensure stronger platform security through 

mitigation of that flaw. 

 Our approach will be to find and identify the impact and general causes of 

exploitation with each flaw generated in Chapter IV, which will lead us to identify 

security vulnerabilities with the goal of flaw elimination in Chapter VI. 

B. FLAW GENERALIZATION 

 We will generalize every flaw sequentially in the order they were generated. 

Beginning with the unstable power flaw on the I2C bus, there was nothing wrong or 

intentionally malicious with the bus itself. However, if a user’s system were to have this 

flaw, the entire system could cause a completely unexpected and unrecoverable shutdown 

resulting in loss of all data. Depending on the system and data, the impact could be minor 

(e.g., a one page memo) or catastrophic (e.g., processing highly sensitive data). The bus 

could work perfectly well on some platform that requires less power. The user of the I2C 

protocol has to be aware of the protocol’s capabilities and limitations. 
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 The oversimplifying flaw is similar because there is nothing physically wrong 

with the bus. We can assume it was written correctly and that it works to specification.  

We can stipulate that a user did not choose a robust enough I2C protocol to implement on 

their platform. However, if a system was to have this flaw, it could ultimately lead to a 

platform’s coming to a standstill. I2C does not have any reset capabilities, which could 

force the user to perform a hot reboot that could further damage the system. The user 

might also face a loss of data and, depending on what data the system was working on, 

the impact can range from minor to severe. The lesson learned is that the user must do a 

better job of choosing a bus to put onto their platform. 

 The ignore flaw can be attributed to bad programming. We can assume that there 

is nothing intentionally malicious, as with the previous two flaws. However, if the ignore 

flaw were to take place, the consequences could have results similar to the 

oversimplifying flaw. The attacker was able to exploit the ignore flaw because the 

programming was weak and the programmer took shortcuts that included failure to 

ensure that components and devices could interact as designed. 

 The infinite wait state flaw is a repercussion of the I2C protocol design. It was 

one of the first IC buses to enter the market in the 1980s, when platform security and 

networks did not exist. Infinite wait state will have the same impact on a system as the 

oversimplifying or ignore flaw. We can infer that during the design process the designers 

skipped over reasonable security and safety measures that would prevent the bus from 

suffering from any long-term interrupts. Other bus protocols that offer reset capabilities 

have come to the market. The designer needs to use stronger methods for testing and 

analysis to ensure bus reliability. 

 A covert delivery flaw is the consequence of having all devices share a single bus 

architecture. If a covert delivery flaw were to occur, the impact would be severe. 

Information is sent from a secure system to the attacker’s system. The information could 

be made public (e.g., country A will attempt to assassinate the president of country B) or 

put to the attacker’s advantage (e.g., the army of country A will patrol location X at time 

Y). The shared architecture design drawback is often discussed in scientific papers, 

journal entries, and conferences explaining and demonstrating how tests proved that a 
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shared bus can be capitalized on in order to exploit a system’s confidentiality policy. 

Most designers would like to believe that all devices attached to a shared bus behave  

as designed. 

 I2C MITM flaw is possibly the most vicious of all exploitable flaws on I2C. The 

impact of the I2C MITM would have the same consequences as the covert delivery flaw, 

in addition to the attacker gaining the advantage of the ability to modify the stolen 

information and send it back onto the bus without being noticed (e.g., instead of the 

message, country A will attempt to assassinate the president of country B, the 

information could be modified to read as country A will attempt to assassinate the 

president of country C). This flaw is possible because I2C allows for a shared 

architecture in which other devices can read what is on the bus. If an attacker were able to 

access a device’s “root” permissions, then they would be able to have complete control of 

the bus, which allows the malicious device to have more control than the reference 

monitor. Designers need to ensure that strong arbitration rules and security bus logic are 

in place to establish that the bus behaves as designed. 

 The bus-hogging flaw is attributed to allowing the manufacturer of the platform 

the freedom to set the priorities of the devices placed on the bus. If this flaw were to 

occur, the efficiency of the bus would be severely degraded because only one device is 

actually getting data processed, while others are unable to access the bus. However, the 

impact is minimal because AMBA has a reset function. The user can detect the error, 

apply the reset function, and administer changes as necessary to resolve the system 

failure. The security concern is allowing trust in a manufacturer or the attacker to have 

flexibility in the operational implementation of the bus. With just an “out of the box” bus 

(i.e., no protocol analyzers used), the flaws can be severe. 

 Our DoS flaw is caused by the failure of arbitration or reference monitor schemes 

being unable to adequately recognize or authenticate particular devices on the bus. The 

impact of the DoS flaw is similar to the bus-hogging flaw. This can be considered a 

symptom of the AMBA authentication and arbitration protocol failing to recognize the 

devices on the bus and their permitted accesses. The impact is minimal because the reset 
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function is available, and if a user or manufacturer has bought a protocol analyzer, then 

testing can be done to determine the error and fix it. 

 The full access flaw is severe. If it were to occur, a device can read secrets from 

other devices on the bus (i.e., compromise the entire system). It will also deny 

information processing in which a user will not get the vital information needed to make 

critical decisions. Furthermore, the full access flaw would permit a device to send 

misleading instructions to another device, which could process corrupted information or 

cause the entire system to crash. The flexibility in AMBA’s protocol gives the attacker 

the ability to grant device permissions that allow for a malicious device to read and write 

from a device not specified within the manufacture’s design parameters. 

 Our read-write-deny MTIM flaw on the HyperTransport bus can be exploited 

because of HyperTransport’s P2P architecture, and it allows every device or processor to 

be its own separate reference monitor. If this flaw were to occur, the consequences could 

be dire. HyperTransport is a high-speed, powerful bus architecture, and if a device were 

to be exploited, sensitive information could be exposed or malicious code could be 

processed, resulting in an unrecoverable crash, memory wipe, etc. The result could be 

that users lose valuable information such as financial data. Unlike a shared bus 

architecture, not all devices have to see the data on the bus; only the devices that fall 

between the sender to receiver. Each device is required to quickly process the address 

space of the data packets to know if it is destined for it or not. Designers have to be 

careful in specifying address ranges for each device. 

 The P2P read-write-deny flaw is similar to the HyperTransport read-write-deny 

MITM flaw. They both share nearly the same architectural properties and the same 

generalities. The difference between the bus architectures is that a designer of Wishbone 

has greater freedom to add security features to the bus. Depending on the 

implementation, the impact of this flaw could be minor because the bus resides on a 

standalone device, or it could have the save impact as the read-write-deny MITM.  The 

concern is that if a user were to apply the Wishbone bus protocol, there is no technical 
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manual to consult and troubleshoot errors, and there is no vendor to consult for help. 

Additionally, this flaw could be the result of the designer’s poor programming practices 

and taking shortcuts. 

 Our shared bus read-deny flaw shares the same generalities as I2C covert delivery 

flaw. The impact of the flaw would be moderate. The users could lose system efficiency 

and functionality as well as reveal sensitive information to the attacker. I2C and 

Wishbone have similar architectures and weak reference monitoring. Furthermore, this 

flaw does not have to be intentional. Bus designs such as these can be victims to amateur 

programmers who have done a poor job in generating the proper design requirements 

and/or lack the programming skills to ensure that the protocol meets its intended 

specification. 

 The crossbar read-deny flaw exploits bus policy by allowing more than one 

master on the bus at a time. The impact of this flaw would be similar to that of the shared 

bus ready-deny flaw. Using crossbar architecture, it can be programmed and distributed 

to the user without a robust reference monitor to arbitrate between both master devices 

when they want to utilize the same slave device. In the case of a lack of protocol analysis, 

manufacturers can easily miss that a master device could have more permissions than 

allowed. The crossbar read-deny flaw need not be intentional. Since this flaw occurs 

with the Wishbone architecture, the user can fall victim to poor design and programming 

techniques. A user has to be aware of what kind of protocol they are using and accept the 

risk they are taking by using the chosen protocol. 

 Our rearbitration denial flaw stems from IBM’s CoreConnect being easily 

corruptible. The impact of this flaw would likely be low. The user will lose system 

efficiency, but the user information on the devices is safeguarded. CoreConnect is a very 

complicated SoC mechanism. With complicated architectures such as CoreConnect, it is 

difficult to detect flaws and trace the root of a flaw’s error. These types of flaws are not 

intentional, but rather overlooked during the implementation phase of development.  

Rearbitration denial occurs when a small subset of a device does not act according to its 

specification. Flaws such as these are often hard to detect without thorough analysis. 
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 The impact of a latency flaw is similar to a rearbitration denial flaw. Although 

the device may have been designed with the best of intentions, due to an oversight during 

implementation and testing, a programming error is overlooked or deemed minor by the 

designers. CoreConnect allows for a reset function, and technical support at IBM  

is available. 

 The request for termination flaw is a result of the same issues as the other two 

flaws on the CoreConnect bus. The system would suffer from reduced efficiency, which 

we consider a low impact. The reset function and vendor support are available. 

C. KEY POINTS OF DISCOVERY 

 Our approach is to generalize the overall security of each bus protocol in an effort 

to answer the question in Chapter VII of whether or not one bus protocol is more than 

secure than another. 

 With the exploits of the I2C bus, we found that the flaws were a result of 

untrusted sources causing simple design corruption. Other causes include a lack of 

requirements during the design process, poor implementation techniques, and a user not 

knowing how to pair the right bus with the right platform. Additionally, trusted sources’  

exploitable flaws, such as Philips Semiconductor’s, primarily result from poor policy 

requirements. 

 AMBA flaws are a result of poor design and overreliance on the reference 

monitor. The designers have put too much trust in allowing manufactures to have 

flexibility of device preferences. AMBA has to have some degree of flexibility in order to 

maintain high marketability across several products. However, if there are no protocol 

analyzers or other tools involved, these small nuances can be easily missed, and an 

attacker can exploit the reference monitor for personal gain. 

 Based on an understanding of the read-write-deny MITM attack, HyperTransport 

makes poor use of reference monitoring given the architecture. Other buses seem to have 

a separate entity, such as an arbiter, that acts like a reference monitor to ensure correct 

device behavior, where HyperTransport requires that each device monitor itself. 
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Additionally, bus architectures like HyperTransport will allow individual processors full 

access to plaintext data packets if addressing assignments are not well defined. 

 Wishbone bus flaws share similarities with AMBA, HyperTransport, and I2C; 

however, these flaws are easily avoidable. No two Wishbone buses are the same. There is 

no exact specification, manual to consult, or technical support team to call on. Wishbone 

flaws can result from bad design practices, poor programming, users having little 

knowledge of the bus protocols, or failure to apply methods for analyzing the bus prior to 

implementation in hardware. 

 CoreConnect’s design complexity makes it difficult to perform thorough security 

analysis. Complicated circuitry can often contain errors and provide attackers with an 

opportunity for exploitation. However, we argue that the generalities and key points 

related to AMBA can also be applied to CoreConnect. 

D. SUMMARY 

 We have examined the flaw generalities and impacts from the 16 exploits that we 

generated and confirmed in Chapter IV. Overall, we found security issues that pertain to a 

product’s life-cycle development, including insufficient design requirements, lack of 

testing, failure to determine the most appropriate bus for a given platform, and poor 

reference monitor design. In Chapter VI, we shall discuss flaw elimination techniques 

and which techniques can be used to enhance IC bus security. 
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VI. FLAW ELIMINATION 

A. INTRODUCTION 

We will analyze and discuss various technologies and techniques that can be 

applied to IC bus architectures and discuss their benefits and drawbacks. We will first 

look at what existing techniques have to offer, including golden model, bus encryption, 

and redesign. We will also suggest some emerging technologies from which IC buses 

could benefit, including Security Enhanced Communication Architecture (SECA), 

TrustZone, Parallelized Encryption and Integrity Checking Engine (PE-ICE), and Gate 

Level Information Flow Tracking (GLIFT). 

B. GOLDEN MODEL 

 Professor Mohammad Tehranipoor of the University of Connecticut published a 

survey of hardware malicious inclusions [24]. In his paper, he stipulated but did not 

promote that using a golden model to verify hardware is one method to mitigate 

malicious inclusions that could violate a system’s security policy and compromise 

confidentiality, integrity, and/or availability of a system. 

 Using a golden model would consist of taking each bus protocol and verifying 

every step and every scenario. Once the IC has been verified, it will be forever deemed 

“The Golden Model” because it would be free from flaws, corruption, subversion, and 

other vulnerabilities. Once the golden model of the IC bus protocol is in place, every bus 

manufactured after it has to be compared to it; the basis of comparison includes, but is 

not limited to, logic gate comparison, functional comparison, power threshold 

comparison, and clock cycle comparison. 

 We can consider the golden model methodology as a base case because using it 

would effectively eliminate every flaw. However, as stated by Professor Tehranipoor, it 

is extremely inefficient and impractical, and verification is only good as the person and 

tools that verified it. The time it takes to test and verify a single golden model and then 

compare it to every IC manufactured would slow down the manufacturing and the 

distribution process. Consider how long it would take to compare 100,000 IC buses to 
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one golden model. This would make the manufacturing and distribution process of 

AMBA, CoreConnect, and HyperTransport impractical. We can consider using a golden 

model on a bus such as Wishbone or I2C because demand for them is relatively low, and 

they are both fairly simple to compare and verify. However, because the product does not 

have a single source vendor like the other IC buses, it would be untenable. 

 A golden model is a nice concept in theory, but impractical, inefficient, and would 

never work because of the general nature of manufacturing and distribution. Users would 

never wait so long for a product and would deem it costly for vendors. The risks in using 

the golden model far outweigh the rewards. The major problem with the golden model is 

that it is impossible to know for sure whether the golden model itself is free from flaws. 

D. REDESIGN 

 Redesigning bus protocols to eliminate weakness is another solution, but is much 

easier said than done. Specifically, Lok-Won Kim and John D. Villasenor [18], [19], 

suggest multiple redesign methods on AMBA that include reconfiguring the address 

decoder, reconfiguring the arbiter, adding a bus matrix, and adding input signal wrappers. 

These methods are also applicable to other SoC bus protocols. 

 Kim and Villasenor suggest reconfiguring the arbiter using a fixed priority 

scheme, a round robin scheme, or a combination of both. Using a fixed priority scheme 

would eliminate the flexibility for adjusting device priority and access. This will 

eliminate confidentiality and integrity vulnerabilities found on SoC buses and provide an 

effective and noninvasive technique that results in no loss of system performance. 

 Using a round-robin scheme, in addition to fixed priority, provides an additional 

benefit because it sets a specific amount of time that a master can utilize the bus without 

hogging the entire bus and effectively denying other devices from using it. This would be 

a popular technique to implement since every device will get a fair allocation of time on 

the bus. There might be some system degradation because some devices might need to 

use the bus more often; however, a designer can easily implement and adjust the round 

robin time share based on frequency of use. Figures 32 and 33 illustrate this round-robin 

method. 
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Figure 32.   Round Robin Master 1. 

 In Figure 32, the arrow above Master 1 indicates that it is currently involved in a 

transaction with Slave 2. Using a round-robin scheme conveys that each device has a set 

amount of time to use the bus at one time. No matter if the bus is in midoperation, if the 

Master device’s time has expired, it must cease operations and allow Master 2 to start as 

seen in Figure 33. Once Master 2 is done or time has expired, Master 1 may continue its 

previous data transmission. Using the round-robin and fixed-priority technique 

effectively eliminates availability vulnerabilities on any bus architecture. 
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Figure 33.   Round Robin Master 2. 

 By modifying the address decoder, a designer can set the decoder to detect an 

attempt by a malicious bus master to access a restricted address and be able to block a 

normal master from inadvertently accessing malicious slaves [18], [19]. This scheme will 

allow for the detection of a malicious Trojan slave, which will then be disconnected from 

the bus. If a master attempts to access a malicious slave, the address decoder will divert 

the access to a default slave containing empty address ranges, thus effectively excluding 

the malicious slave from the system [18], [19]. 

 Additionally, implementing a secure bus matrix enables a connection between the 

authorized master and slave device. A secure matrix will detect, block, and report a 

malicious wait signal from a malicious Trojan device. Using the secure matrix will 

effectively eliminate any availability vulnerabilities associated with a SoC bus policy. 

 Reconfiguring system logic to provide input signal wrappers between master and 

slave devices can prevent eavesdropping and modification by unauthorized devices on a 

shared bus architecture. The nature of shared bus architectures leaves the entire platform 

open to vulnerabilities. Logic is provided such that data is only visible to the master and 

slave legitimately involved in the bus transaction [18], [19]. 
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This technique would have to be used in conjunction with another type of flaw 

elimination method that would ensure the availability of the bus. Figures 34 and 35 

demonstrate input signal wrappers. 

 

 

Figure 34.   Input Signal Wrapper. 

 In Figure 34, the big yellow block represents a logic input signal wrapper such 

that only the data transaction is visible to Master 1 and Slave 2. Once the data 

transmission is complete, the input signal wrapper is gone and the bus architecture returns 

to normal, as seen in Figure 35. 
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Figure 35.   Signal Wrapper Termination. 

 These policies and architecture changes are effective and rather simple to 

implement; however, the research and testing for these solutions were conducted on SoC 

IC buses and not on buses like I2C and HyperTransport. Design options such as input 

signal wrappers and round-robin schemes are applicable, but a redesign of arbitration 

methods is not. 

E. BUS ENCRYPTION 

 Encrypting data on the bus is one the simplest and most practical methods for 

eliminating confidentiality vulnerabilities. Advanced encryption algorithms already exist 

that have proved to be efficient. For example, a designer can use a Rivest, Shamir, & 

Aldeman (RSA) encryption algorithm that uses asymmetric key exchange of symmetric 

keys between devices, with each device already having its own asymmetric keys 

preinstalled. An operation will begin with the master device sending an address request to 

a slave device, along with its signature. In turn, the slave device will send an 

acknowledgment and its signature to the master device. Once the identities of the master 

and slave device have been confirmed, the master device will send information encrypted 

with the slave’s public key. The slave device will receive the information and decrypt it 
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with its private key. For more efficiency, the master and slave can use asymmetric 

cryptography to exchange a symmetric key. Figures 36-39 demonstrate this idea. 

 

Figure 36.   Initial Data Transfer. 

 In Figure 36, Master 1 is sending a request to Slave 2 for a data transfer. This is 

how any normal operation would begin for I2C. 

 

Figure 37.   Master 1 Signature. 
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 After Master 1 has sent its request for a data transfer to Slave 2, it sends an 

additional bit that will indicate the device’s signature in order to authenticate itself to 

Slave 2. 

 

Figure 38.   Slave 2 Signature. 

 After Slave 2 has sent an acknowledgement bit to Master 1, it sends an additional 

bit to indicate its signature, as seen in Figure 38. 

 

Figure 39.   Encrypted Data Packet. 
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 In Figure 39, once all parties have authenticated to one another, the data 

transmission begins. Master 1 sends data encrypted by Slave 2’s public key as denoted by 

the “????” in the data packet, for which Slave 2 is the only device that can decrypt the 

data. Once the data transmission is complete, the bus operation will end, as is the case for 

any normal bus operation. 

 The benefit of using bus encryption is that it is an easy solution for the designer 

and manufacturer. Communities have come up with great encryption protocols. Ciphers 

such as RSA, Advanced Encryption Standards (AES), Data Encryption Standard (DES), 

etc. can be used to eliminate confidentiality vulnerabilities for IC bus policies. Also, 

using simple Message Digest 5 (MD5) cryptographic hashes together with a nonce at the 

end of every data exchange from sender and receiver will help ensure that there are no 

modifications during transmission. However, even though there are clear benefits to 

using encryption on bus protocols, there is some cost. First of all, the protocol is 

completely dependent on a good bus encryption algorithm, and it has to be implemented 

correctly in hardware. Attackers can exploit weak ciphers and bad hardware 

implementations. Cryptographic keys must be properly managed, and the encryption and 

decryption operations will consume resources of time, circuit area, and power, as 

discussed below. The performance of the cipher compared with the speed of the bus must 

be carefully considered when designing a bus that is integrated with an encryption 

mechanism. While a strong cipher addresses confidentiality vulnerabilities, other 

solutions for addressing integrity and availability vulnerabilities are needed. 

 As we have stated in earlier chapters, the primary objective of a bus security 

policy is to ensure availability through timely and reliable delivery. This solution will not 

eliminate any of the availability flaws that we have generated in Chapter IV. 

Additionally, using encryption will slow down the speed and efficiency of the bus 

protocol. For speeds of 100-400 kb/s associated with I2C, this might not make much of a 

difference, but for HyperTransport bus speeds of 25 Gigabytes/second (Gb/s), it may 

result in substantial performance degradation, depending on the efficiency, specifically 

the throughput, of the implementation of the encryption and decryption operations. 

Manufacturers and designers may not find this desirable enough to implement in their bus 
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protocols and may therefore choose speed and efficiency over security. If the designer 

chooses to use bus encryption it would have to be on a device where timing and speed are 

not a priority, and where some other measures are implemented to eliminate availability 

and integrity flaws. 

F. SECURITY ENHANCED COMMUNICATION ARCHITECTURE (SECA) 

 SECA is not currently implemented in any fielded systems, but rather is a 

theoretical solution from NEC laboratories to address a SoC architecture’s security 

concerns. SECA is to be embedded into a system for which it acts as an additional 

reference monitor to enforce the SoC’s security policies [25]. 

 As we can see from Figure 40, SECA is embedded in the AMBA SoC bus. SECA 

is a centralized module consisting of a single Security Enforcement Module (SEM) and a 

Security Enforcement Interface (SEI) for each slave device. SEM can exist as a master or 

slave and act as an enforcer of program security policies, access control, and intrusion 

detection. The SEI is placed on the slave devices and helps the SEM filter values that 

reach the data and control registers of peripherals [25]. 

 

Figure 40.   SECA on AMBA Architecture (From [25]). 
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 SEM enforces system security through the Address Protection Unit (APU),  

Data-based Protection Unit (DPU), and Sequence-based Protection Unit (SPU). The APU 

enforces rules for read-write access control for each device. The APU utilizes a lookup 

table for each entry, which contains permissions. Using the DPU, memory space is set 

aside to store access levels to reduce time wasted on continuous address look-ups. The 

SPU relies on the basic sequences of transactions through the security of formal methods 

(i.e., automata). Security policies have associated formal methods, and the SPU ensures 

that information flows in accordance with those prescribed states [25]. 

 Essentially, the SEM is an enhanced arbiter with SEI modules attached to each 

device reporting to the SEM on their individual device security state vice having one 

arbiter manage all devices. This is great idea for SoC buses such as AMBA, 

CoreConnect, and even Wishbone. If developed and implemented in the open market, 

this could address SoC bus confidentiality, integrity, and availability vulnerabilities; 

however, the performance overhead of using security schemes in SoC designs has not 

been fully addressed. Furthermore, this solution does not alleviate the problem for non-

SoC buses; another solution for HyperTransport and I2C is needed. 

G. TRUSTZONE 

 TrustZone is a product developed and sold by ARM Ltd. that can be used on most 

SoC buses. The intent of TrustZone is to provide a one-size-fits-all solution. TrustZone 

allows the SoC designer to divide the devices on the SoC and place them into two worlds. 

One world is secure, and the other is considered normal. Figure 41 is an abstraction 

TrustZone [26]. 
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Figure 41.   TrustZone topology (From [26]). 

 The objective of TrustZone is fairly straightforward. An environment has been 

constructed that protects the programmable environment from confidentiality and 

integrity attacks. The two worlds may communicate with one another through a Monitor 

mode, which is placed in the secure world. The processing time between both worlds is 

shared using time slices [26]. 

 This can work for almost any SoC and provides flexibility. The process is 

relatively simple and easy to understand, but the overhead of using security schemes in 

SoC designs has not been fully addressed. TrustZone may be useful for SoC buses, but it 

will not help I2C and HyperTransport [26]. 

H. PARALELLIZED ENCYRPTION INTEGRITY CHECKING ENGINE 
 (PE-ICE) 

 The purpose of using the PE-ICE solution for SoC is to protect data 

confidentiality and data integrity from MITM attacks. As seen in Figure 42, data 

confidentiality is protected using a block encryption algorithm such as Advanced 

Encryption Algorithm (AES). Data integrity is protected using a three-stage process. 

Once the encryption has been performed, each encrypted block depends on the 

corresponding plaintext blocks that follow. Second, the data is verified using a nonce that 
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was sent along with the encrypted data. Since a nonce is a one-time value, it hard to 

replicate. Furthermore, if there is an integrity violation, then PE-ICE raises the integrity 

checking flag for further investigation. Finally, the SoC is responsible for encrypting and 

decrypting. A Tag is associated with each block, and each SoC must have a preexisting 

knowledge of each Tag. If the Tag was modified by an attacker, then the processor will 

not be able to open the block and therefore know that it had been tampered with [27]. 

 

 

Figure 42.   PE-ICE Process (From [27]). 

 PE-ICE is an innovative approach, but just like our general encryption solution, 

there is some performance loss. PE-ICE adds protection to the integrity of the data; 

however, if an attacker continues to modify the block, then the recipient will be 

continuously denied from accessing information. An availability solution is also needed. 

I. GATE-LEVEL INFORMATION FLOW TRACKING (GLIFT) 

 As technology progresses, so does the sophistication of attacks. IC buses are 

added to circuits, which use logic gates that provide for fast and efficient information 
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flow. There has been considerable work in data-flow tracking architectures for detecting 

malicious behavior such as code injection attacks and cross-site scripting [28]. 

 GLIFT is a proposed method for tracking logic gates. The idea behind GLIFT is 

that every gate has a shadow gate that processes the Tags. For example, an AND gate has 

two data inputs, and its shadow gate has two tag inputs. The AND gate computes the data 

output based on the traditional AND truth table, but the shadow gate computes the tag 

output based on a special truth table that considers both the data inputs and the tag inputs. 

A one-bit tag can represent that the corresponding data is either tainted or untainted. 

GLIFT can detect problems in circuits where tainted and untainted data must be kept 

separate. GLIFT will be able to identify that tainted data has propagated to a part of the 

circuit where only untainted data should reside. GLIFT shadow logic can be added to a 

circuit that is put into production, with the shadow logic operating in parallel with the 

data logic, or GLIFT can be used during the development phase only and removed once it 

is determined through testing that the circuit does not have improper information  

flow [28]. 

 We argue that GLIFT could be applied to analyze bus circuitry, and it already has 

been applied in the laboratory for this purpose. However, GLIFT is still under 

development. GLIFT, together with other dynamic information flow tracking (DIFT) and 

tagging techniques, offers unique benefits for hardware-oriented security and trust. 

J. ELIMINATION MATRIX 

We will take all the techniques discussed in this chapter and match them to the IC 

bus protocols that we have discussed in this thesis. Table 7 depicts a matrix with all the 

flaw elimination techniques represented in the columns and the buses are represented in 

the rows. An “X” is marked to signify that the elimination technique could be applied to 

that particular bus. HyperTransport is represented by “HT,” Wishbone by “WB,” and 

CoreConnect by “CC.” 
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 Golden Model Redesign Round Robin Arbiter Redesign Encryption SECA TrustZone PE-ICE GLIFT 
I2C X  X  X    X 
AMBA X X X X X X X X X 
HT X    X   X X 
WB X X X X X X X X X 
CC X X X X X X X X X 

Table 7.   Elimination matrix. 

K. SUMMARY 

This concludes our discussion of FHM penetration testing. We have discussed 

over 10 different methods and technological advances that can help protect IC bus 

security policies. Some methods are not practical, such as the Golden Model, whereas 

others impose performance degradation (i.e., encryption) or are not yet fully available for 

use in production-quality (i.e., sign-off) tools (e.g., SECA and GLIFT). Vendors and 

users of IC bus protocols have to make their own decisions on what techniques to use, but 

hopefully, our analysis will provide some insight for making these choices. Chapter VII 

will form conclusions and tie together the discussion from the earlier chapters, including 

the original hypothesis and thesis questions, what we discovered, and what remains to  

be done. 
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VII. CONCLUSIONS 

A. INTRODUCTION 

In this chapter, we summarize our results and compare what we expected to find 

against what we actually found (i.e., Do buses have any security relevant properties? Is 

one bus more secure than another?). In addition, we discuss opportunities for future work. 

B. TAKEAWAYS 

 Our conclusions are based on our understanding of the similarities in IC bus 

operations, flaws found, and methods used to eliminate flaws with. Every bus roughly has 

the following operational sequences in common: 

 A master device must request use of a slave device 

 A reference monitor is in place in order to ensure the master device  

has access 

 The reference monitor will also ensure that the slave device is free to use 

 The reference monitor will grant access if steps 2 and 3 are met 

 The master device will then begin its data transmission 

 Every type of IC bus is designed differently, whether it is for speed and efficiency 

or a particular platform. They are all called buses because they meet the standard 

definition of reliably delivering data from one device to another. We discovered through 

our process of FHM that these buses carried some striking similarities in flaw exploits, 

which will also lead to some similar principles in fixes and mitigations. We found that 

many of the exploits were based on corruptions introduced by designers, which ranged 

from flagrantly overlooked problems to ones that would have been difficult to know. All 

IC buses are built using gate logic, which is complex in itself, but adding bus protocols 

and arbitration sequences makes it even more difficult to be completely thorough in 

testing and analysis. Because of some lack of oversight or design missteps, attackers 

could make these kinds of flaws work to their advantage, typically in the form of a DoS. 

Additionally, we found that some of the flaws were attributable to designers choosing the 

wrong bus for their platform. There are a lot of IC buses from which to choose, ranging 
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from highly untrusted to highly trusted. A user could choose a highly trusted bus, such as 

CoreConnect, that is far too complicated for a simple SoC device, or they could choose 

an untrusted bus like I2C that is too simple for a system with complex hardware. Either 

way, this would result in some form of DoS because the bus would not be able to 

recognize certain commands from the devices. 

 Another common flaw that kept appearing through the various flaw generation 

processes was bus hogging. A lot of the IC bus devices allowed for priorities and/or the 

protocol never specified a maximum amount of time a device may use the bus at one 

time. These would result in bus hogging, and we were able to resolve this through 

suggesting schemes that use fixed time slices such as round robin schemes. This would 

resolve most of the availability flaws caused by bus hogging. 

 Additionally, we found that a lot of buses are designed with a shared architecture, 

which is exploitable through eavesdropping on another device’s bus transmissions. To 

resolve confidentiality violations, we found that all IC buses can easily apply some form 

of cryptography to protect the data traversing the bus. 

 We were also able to generate a number of MITM attacks for all of the buses. 

These attacks would result in violations of confidentiality, integrity, and availability. We 

have addressed the common mitigations to confidentiality and availability, but integrity 

has proved to be the toughest. What seems to be the common solution to this is adding 

PE-ICE to check for altered data, or to use input signal wrappers that would alter gate 

logic so that only the participating master and slave device would be able to see the data 

on the bus. 

C. WHAT WE KNOW NOW 

In Chapter I, we asked whether IC bus protocols have any inherent security 

properties and if one bus is more secure than another. We initially assumed that buses do 

have inherent security properties, but only those associated with ensuring availability. 

Our research has lead us to the conclusion that yes, the IC buses do have security 

properties related to availability, but they additionally display some minor security 

properties that are related to availability and integrity. The use of reference monitoring 
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and an address decoder helps ensure that when a device accesses other devices, it does 

not read or write to devices it is not supposed to. This is a relatively minor security 

property, but we realize that more has to be done to ensure stronger confidentiality, 

integrity, and availability security properties. 

The other question that we were able to resolve was whether one bus was more 

secure than the other. The answer is yes! Different buses display stronger security 

properties, reference monitor schemes, or have better control of their life-cycle 

development. In order to demonstrate our assertion, Table 8 is a list of all flaws generated 

from Chapter V, and it is used to compare all IC buses discussed in this thesis. This table 

is used to convey which bus is more secure than the other by demonstrating which flaws 

can apply to which particular buses, as denoted by the “X.” 

 
 I2C AMBA Hyper-Transport Wishbone CoreConnect

I2C MITM X   X  
Covert Delivery X   X  
Infinite Wait State X   X  
Ignore X X X X X 
Oversimplifying X X X X X 
Unstable Power X X X X X 
Full Access X X X X X 
DoS X X X X X 
Bus Hogging  X X X X 
Read-write-deny MITM X X X X X 
P2P read-write deny   X X  
Shared bus read-deny X   X  
Crossbar read-deny X   X  
Rearbitration  X  X X 
Large Latency  X  X X 
Request Termination  X  X X 

TOTAL: 11 10 8 16 10 

Table 8.   Bus security weaknesses. 

 All the generated flaws were analyzed to determine whether they were applicable 

to the bus and which ones are based on similar architecture, operational protocol, and 

reference monitoring schemes. We were able to determine that HyperTransport, despite 



 88

being considered to have relatively weak reference monitoring, displayed the greatest 

amount of security, followed by AMBA and CoreConnect. I2C and Wishbone rounded 

out the bottom two, as we initially hypothesized. 

 HyperTransport displayed stronger security property because it does not use a 

shared architecture, and data moves at such a high speed that it is difficult to read from or 

write to it without the slowing of the bus being noticed. HyperTransport comes from a 

single-source entity, which has a center of excellence, colloquia, white papers, and other 

forums dedicated to the design and efficiency of the bus. 

 AMBA and CoreConnect were rated the same, and it can be asserted that 

whatever flaw or vulnerability that AMBA has, then CoreConnect would have the same 

and vice versa. Both buses are very similar in architectural design and platform use. We 

can assert that CoreConnect is a little more secure because it has a reference monitor for 

each of the bus components (i.e., three reference monitors), whereas AMBA only has 

one. Both buses are products of single-source vendors that continually update their bus in 

order to be efficient and remain competitive in the marketplace. 

 It was assumed throughout this thesis that I2C was one of the least secure of the 

all the buses. Its shared architecture allows for every device attached to the bus to read 

whatever data is traversing it. Also, there are multiple sources of procurement, it has an 

outdated protocol that will not be updated, it has a weak arbitration scheme, and it is 

typically used on televisions and radios, which cause little motivation to incorporate 

stronger security measures into such a low-security application. 

 Wishbone can take on virtually any form. The design, architecture, protocol, and 

protection measures are left to the individual designer, which can make this bus one of 

the strongest or the weakest of all five. Additionally, Wishbone is the weaker protocol 

because the bus can be downloaded from open-source hardware sites, such as OpenCores, 

where the code is posted for anyone to download without any assurance of security or its 

compatibility with the user’s platform. 

 In order for a bus to be secure, it must have a strong architecture (i.e., one that is 

not shared), separation of trusted components from normal components, and strong 
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addressing schemes that are not subject to loose interpretation. Also, it should originate 

from trusted sources that offer detailed specifications, a manual in English, vendor 

assistance, and protocol analyzer support. 

D. BIGGEST CHALLENGES 

 Throughout this thesis process, the author has faced many challenges—primarily, 

not having the physical or simulated buses to actually test flaws with. Everything had to 

be done through analytic research that was grounded in documentation or previous testing 

from other researchers. Having no experience in penetration testing, no background in 

hardware security, and no IC bus knowledge before starting this thesis proved 

challenging. 

E. FUTURE WORK 

 This thesis has laid the foundation for future work in IC bus security testing. 

Ultimately, it is the author’s goal to have someone with an electrical engineering or 

computer engineering background from a university to apply this thesis as the 

groundwork to test our ideas on FPGAs and then apply the suggested flaw  

elimination techniques. 

 However, that is a big leap from this thesis, and it needs to be taken in smaller 

steps by first developing our threats and exploits on software, followed by development 

of elimination techniques. Once those have been tested, then another thesis can move 

towards implementing them on an actual processor and measure loss or gain in efficiency 

and determine the optimal elimination techniques for IC bus protocols. Additionally, 

future work can also develop more advanced bus exploitations than those mentioned and 

discovered in this thesis. 
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F. SUMMARY 

The author hopes that this thesis is able to provide valuable insights to the 

hardware security community in order to shed some light on the exploitation of bus 

protocols. Additionally, we were able to discover that buses do have individual security 

properties, and one can be more secure than the other. The next step is to use this thesis 

as a basis for further analysis and testing on software and hardware modules. 
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